ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

裂隙性黄土潜蚀洞穴形成机理模型试验研究

张卜平 朱兴华 孙恒飞 蔡佳乐 程茜

张卜平,朱兴华,孙恒飞,等. 裂隙性黄土潜蚀洞穴形成机理模型试验研究[J]. 水文地质工程地质,2023,50(6): 158-167 doi:  10.16030/j.cnki.issn.1000-3665.202209052
引用本文: 张卜平,朱兴华,孙恒飞,等. 裂隙性黄土潜蚀洞穴形成机理模型试验研究[J]. 水文地质工程地质,2023,50(6): 158-167 doi:  10.16030/j.cnki.issn.1000-3665.202209052
ZHANG Buping, ZHU Xinghua, SUN Hengfei, et al. A model experimental study of the formation mechanism of internal erosion caves in fractured loess[J]. Hydrogeology & Engineering Geology, 2023, 50(6): 158-167 doi:  10.16030/j.cnki.issn.1000-3665.202209052
Citation: ZHANG Buping, ZHU Xinghua, SUN Hengfei, et al. A model experimental study of the formation mechanism of internal erosion caves in fractured loess[J]. Hydrogeology & Engineering Geology, 2023, 50(6): 158-167 doi:  10.16030/j.cnki.issn.1000-3665.202209052

裂隙性黄土潜蚀洞穴形成机理模型试验研究

doi: 10.16030/j.cnki.issn.1000-3665.202209052
基金项目: 国家自然科学基金项目(442090053;42041006;41877249)
详细信息
    作者简介:

    张卜平(1993-),男,博士研究生,主要从事黄土渗透潜蚀机理及致灾效应的学习和科研工作。E-mail:zhangbuping@chd.edu.cn

    通讯作者:

    朱兴华(1984-),男,博士,副教授,硕士生导师,主要从事地质灾害防治方面的科研与教学工作。E-mail:zhuxinghua@chd.edu.cn

  • 中图分类号: P642.2

A model experimental study of the formation mechanism of internal erosion caves in fractured loess

Funds: This research is supported by the National Natural Science Foundation of China(Grant No. 442090053;42041006;41877249).
  • 摘要: 黄土台塬边缘裂隙性黄土中洞穴形成机理复杂,且与滑坡、崩塌等地质灾害的发生具有紧密联系,给塬边人民的生产生活造成严重威胁。针对裂隙性黄土中潜蚀洞穴如何形成这一科学问题,以陕西省泾阳县南塬地区典型黄土潜蚀洞穴为试验参考,利用可视化裂隙性黄土潜蚀洞穴形成机理模型试验装置,开展了4组不同初始裂隙开度条件下黄土潜蚀洞穴形成机理模型试验。研究表明:黄土裂隙在水流潜蚀下向黄土潜蚀洞穴的发展过程可分为水力侵蚀阶段、浸润淘蚀阶段和重力崩塌阶段;裂隙性黄土潜蚀洞穴的形成机理可概括为软化崩解-冲刷扩宽-淘蚀临空-重力崩塌;潜蚀输沙量和泥沙输运特征反映了裂隙性黄土渗流潜蚀的发展速率,可分为快速潜蚀阶段、波动降低阶段和缓慢稳定潜蚀阶段;裂隙开度、黄土可蚀性和极限凹槽深度是裂隙性黄土潜蚀洞穴形成的重要影响因子。研究成果对进一步揭示黄土潜蚀的致灾效应提供理论支撑。
  • 图  1  泾阳南塬塬边典型裂缝和潜蚀洞穴

    Figure  1.  Typical cracks and sinkholes at the edge of the Jingyang Southern Platform Plateau

    图  2  试验装置

    Figure  2.  Testing apparatus

    图  3  潜蚀洞穴形成演化过程曲线图

    Figure  3.  Formation and evolution curve of the sinkhole

    图  4  水力侵蚀阶段潜蚀洞穴的形态特征

    Figure  4.  Morphological characteristics of the sinkhole at the hydraulic erosion stage

    图  5  重力崩塌阶段潜蚀洞穴的形态特征

    Figure  5.  Morphological characteristics of the sinkhole at the gravity collapse stage

    图  6  含沙量随时间变化曲线

    Figure  6.  Changes of sediment concentration with time

    图  7  累积含沙量曲线

    Figure  7.  Changes of cumulative sediment concentration with time

    图  8  裂隙性黄土潜蚀洞穴形成过程示意图

    Figure  8.  Schematic diagram of the formation process of the seepage cave in fractured loess

    图  9  不同裂隙开度条件下的侵蚀特征

    Figure  9.  Erosion characteristics under different crack openings

    表  1  土样基础物理参数表

    Table  1.   Basic physical parameters of the soil sample

    参数 天然含水量/% 干密度/(g·cm−3 比重 液限 塑限
    取值 17.3 1.5 2.7 26.1 19.5
    下载: 导出CSV
  • [1] 王景明,倪玉兰,孙建中. 黄土构造节理研究及其应用[J]. 工程地质学报,1994,2(4):31 − 42. [WANG Jingming,NI Yulan,SUN Jianzhong. A study on structural joints in loess and its practical applications[J]. Journal of Engineering Geology,1994,2(4):31 − 42. (in Chinese with English abstract)

    WANG Jingming, NI Yulan, SUN Jianzhong. A study on structural joints in loess and its practical applications[J]. Journal of Engineering Geology, 1994, 24): 3142. (in Chinese with English abstract)
    [2] 彭建兵,李喜安,孙萍,等. 黄土洞穴的环境灾害效应[J]. 地球与环境,2005,33(4):1 − 7. [PENG Jianbing,LI Xi’an,SUN Ping,et al. Environmental and disaster effects of loess caves[J]. Geology-geochemistry,2005,33(4):1 − 7. (in Chinese with English abstract) doi:  10.3969/j.issn.1672-9250.2005.04.001

    PENG Jianbing, LI Xi’an, SUN Ping, et al. Environmental and disaster effects of loess caves[J]. Geology-geochemistry, 2005, 334): 17. (in Chinese with English abstract) doi:  10.3969/j.issn.1672-9250.2005.04.001
    [3] 彭建兵,李喜安,范文,等. 黄土高原地区黄土洞穴的分类及发育规律[J]. 地学前缘,2007,14(6):234 − 244. [PENG Jianbing,LI Xi’an,FAN Wen,et al. Classification and development pattern of caves in the loess plateau[J]. Earth Science Frontiers,2007,14(6):234 − 244. (in Chinese with English abstract) doi:  10.3321/j.issn:1005-2321.2007.06.030

    PENG Jianbing, LI Xi’an, FAN Wen, et al. Classification and development pattern of caves in the loess plateau[J]. Earth Science Frontiers, 2007, 146): 234244. (in Chinese with English abstract) doi:  10.3321/j.issn:1005-2321.2007.06.030
    [4] PENG Jianbing,SUN Ping,IGWE O,et al. Loess caves,a special kind of geo-hazard on loess plateau,northwestern China[J]. Engineering Geology,2018,236:79 − 88. doi:  10.1016/j.enggeo.2017.08.012
    [5] 许领,李宏杰,吴多贤. 黄土台缘滑坡地表水入渗问题分析[J]. 中国地质灾害与防治学报,2008,19(2):32 − 35. [XU Ling,LI Hongjie,WU Duoxian. Discussion on infiltration of surface water and their significance to terrace loess landslides[J]. The Chinese Journal of Geological Hazard and Control,2008,19(2):32 − 35. (in Chinese with English abstract) doi:  10.3969/j.issn.1003-8035.2008.02.007

    XU Ling, LI Hongjie, WU Duoxian. Discussion on infiltration of surface water and their significance to terrace loess landslides[J]. The Chinese Journal of Geological Hazard and Control, 2008, 192): 3235. (in Chinese with English abstract) doi:  10.3969/j.issn.1003-8035.2008.02.007
    [6] 杨华. 裂隙性黄土渗透特性试验研究[D]. 西安:长安大学,2016. [YANG Hua. Experimental study on permeability characteristics of fractured loess[D]. Xi’an:Chang’an University,2016. (in Chinese with English abstract)

    YANG Hua. Experimental study on permeability characteristics of fractured loess[D]. Xi’an: Chang’an University, 2016. (in Chinese with English abstract)
    [7] 邹锡云,许强,彭大雷,等. 黑方台典型黄土洞穴形成的影响因素[J]. 科学技术与工程,2018,18(28):58 − 64. [ZOU Xiyun,XU Qiang,PENG Dalei,et al. Influencing factors of formation of typical loess sinkhole in Heifangtai[J]. Science Technology and Engineering,2018,18(28):58 − 64. (in Chinese with English abstract) doi:  10.3969/j.issn.1671-1815.2018.28.007

    ZOU Xiyun, XU Qiang, PENG Dalei, et al. Influencing factors of formation of typical loess sinkhole in Heifangtai[J]. Science Technology and Engineering, 2018, 1828): 5864. (in Chinese with English abstract) doi:  10.3969/j.issn.1671-1815.2018.28.007
    [8] 郑鹏飞,胡江洋,刘晓京. 黄土边坡落水洞的形成演化机理研究[J]. 灾害学,2019,34(增刊1):224 − 227. [ZHENG Pengfei,HU Jiangyang,LIU Xiaojing. Formation and evolution mechanism of waterfall tunnel on loess slope[J]. Journal of Catastrophology,2019,34(Sup 1):224 − 227. (in Chinese with English abstract)

    ZHENG Pengfei, HU Jiangyang, LIU Xiaojing. Formation and evolution mechanism of waterfall tunnel on loess slope[J]. Journal of Catastrophology, 2019, 34(Sup 1): 224 − 227. (in Chinese with English abstract)
    [9] 孔嘉旭,庄建琦,彭建兵,等. 兰州老狼沟黄土微地貌灾害链时空分布特征与危险性模拟研究[J]. 工程地质学报,2021,29(5):1401 − 1415. [KONG Jiaxu,ZHUANG Jianqi,PENG Jianbing,et al. Spatial and temporal distribution characteristics and risk simulation of loess micro geomorphic disaster chain in Laolang gully,Lanzhou[J]. Journal of Engineering Geology,2021,29(5):1401 − 1415. (in Chinese with English abstract) doi:  10.13544/j.cnki.jeg.2021-0435

    KONG Jiaxu, ZHUANG Jianqi, PENG Jianbing, et al. Spatial and temporal distribution characteristics and risk simulation of loess micro geomorphic disaster chain in Laolang gully, Lanzhou[J]. Journal of Engineering Geology, 2021, 295): 14011415. (in Chinese with English abstract) doi:  10.13544/j.cnki.jeg.2021-0435
    [10] 彭建兵,兰恒星,钱会,等. 宜居黄河科学构想[J]. 工程地质学报,2020,28(2):189 − 201. [PENG Jianbing,LAN Hengxing,QIAN Hui,et al. Scientific research framework of livable Yellow River[J]. Journal of Engineering Geology,2020,28(2):189 − 201. (in Chinese with English abstract) doi:  10.13544/j.cnki.jeg.2020-129

    PENG Jianbing, LAN Hengxing, QIAN Hui, et al. Scientific research framework of livable Yellow River[J]. Journal of Engineering Geology, 2020, 282): 189201. (in Chinese with English abstract) doi:  10.13544/j.cnki.jeg.2020-129
    [11] 彭建兵,吴迪,段钊,等. 典型人类工程活动诱发黄土滑坡灾害特征与致灾机理[J]. 西南交通大学学报,2016,51(5):971 − 980. [PENG Jianbing,WU Di,DUAN Zhao,et al. Disaster characteristics and destructive mechanism of typical loess landslide cases triggered by human engineering activities[J]. Journal of Southwest Jiaotong University,2016,51(5):971 − 980. (in Chinese with English abstract) doi:  10.3969/j.issn.0258-2724.2016.05.021

    PENG Jianbing, WU Di, DUAN Zhao, et al. Disaster characteristics and destructive mechanism of typical loess landslide cases triggered by human engineering activities[J]. Journal of Southwest Jiaotong University, 2016, 515): 971980. (in Chinese with English abstract) doi:  10.3969/j.issn.0258-2724.2016.05.021
    [12] 王家鼎,许元珺,张登飞,等. 黄土振动促渗效应研究[J]. 中国科学:地球科学,2021,51(5):763 − 782. [WANG Jiading,XU Yuanjun,ZHANG Dengfei,et al. Study on the effect of loess vibration on promoting infiltration[J]. Scientia Sinica (Terrae),2021,51(5):763 − 782. (in Chinese) doi:  10.1360/SSTe-2020-0293

    WANG Jiading, XU Yuanjun, ZHANG Dengfei, et al. Study on the effect of loess vibration on promoting infiltration[J]. Scientia Sinica (Terrae), 2021, 515): 763782. (in Chinese). doi:  10.1360/SSTe-2020-0293
    [13] HU Sheng,QIU Haijun,WANG Ninglian,et al. The influence of loess cave development upon landslides and geomorphologic evolution:A case study from the northwest Loess Plateau,China[J]. Geomorphology,2020,359:107167. doi:  10.1016/j.geomorph.2020.107167
    [14] 张焱,邱海军,胡胜,等. 黄土洞穴发育条件下滑坡土体性质及其稳定性分析[J]. 自然灾害学报,2020,29(2):64 − 75. [ZHANG Yan,QIU Haijun,HU Sheng,et al. Analysis of the properties and stability of landslide soil under the development conditions of loess caves[J]. Journal of Natural Disasters,2020,29(2):64 − 75. (in Chinese with English abstract) doi:  10.13577/j.jnd.2020.0207

    ZHANG Yan, QIU Haijun, HU Sheng, et al. Analysis of the properties and stability of landslide soil under the development conditions of loess caves[J]. Journal of Natural Disasters, 2020, 292): 6475. (in Chinese with English abstract) doi:  10.13577/j.jnd.2020.0207
    [15] 张卜平,朱兴华,成玉祥,等. 黄土潜蚀机理及其致灾效应研究综述[J]. 中国地质灾害与防治学报,2021,32(6):41 − 52. [ZHANG Buping,ZHU Xinghua,CHENG Yuxiang,et al. A review on loess subsurface-erosion mechanism and it’s hazard effects[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):41 − 52. (in Chinese with English abstract) doi:  10.16031/j.cnki.issn.1003-8035.2021.06-06

    ZHANG Buping, ZHU Xinghua, CHENG Yuxiang, et al. A review on loess subsurface-erosion mechanism and it’s hazard effects[J]. The Chinese Journal of Geological Hazard and Control, 2021, 326): 4152. (in Chinese with English abstract) doi:  10.16031/j.cnki.issn.1003-8035.2021.06-06
    [16] 罗扬. 黄土节理的强度与渗流问题研究[D]. 西安:西安建筑科技大学,2014. [LUO Yang. Study on strength and seepage of loess joints[D]. Xi’an:Xi’an University of Architecture and Technology,2014. (in Chinese with English abstract)

    LUO Yang. Study on strength and seepage of loess joints[D]. Xi’an: Xi’an University of Architecture and Technology, 2014. (in Chinese with English abstract)
    [17] 张宇. 考虑张开度的节理发育黄土体水分场试验研究[D]. 西安:西安建筑科技大学,2020. [ZHANG Yu. Experimental study on moisture field of jointed loess considering opening degree[D]. Xi’an:Xi’an University of Architecture and Technology,2020. (in Chinese with English abstract)

    ZHANG Yu. Experimental study on moisture field of jointed loess considering opening degree[D]. Xi’an: Xi’an University of Architecture and Technology, 2020. (in Chinese with English abstract)
    [18] WANG Jiading,GU Tianfeng,ZHANG Maosheng,et al. Experimental study of loess disintegration characteristics[J]. Earth Surface Processes and Landforms,2019,44(6):1317 − 1329. doi:  10.1002/esp.4575
    [19] WANG Li,LI Xian,LI Lincui,et al. Experimental study on the physical modeling of loess tunnel-erosion rate[J]. Bulletin of Engineering Geology and the Environment,2019,78(8):5827 − 5840. doi:  10.1007/s10064-019-01495-1
    [20] WANG Li,LI Xian,ZHENG Ziyu,et al. Analysis of the slope failure mechanism a under tunnel erosion environment in the south-eastern Loess Plateau in China[J]. CATENA,2022,212:106039. doi:  10.1016/j.catena.2022.106039
    [21] 谷天峰,袁亮,胡炜,等. 黑方台黄土崩解性试验研究[J]. 水文地质工程地质,2017,44(4):62 − 70. [GU Tianfeng,YUAN Liang,HU Wei,et al. Experimental research on disintegration of the Heifangtai loess[J]. Hydrogeology & Engineering Geology,2017,44(4):62 − 70. (in Chinese with English abstract) doi:  10.16030/j.cnki.issn.1000-3665.2017.04.10

    GU Tianfeng, YUAN Liang, HU Wei, et al. Experimental research on disintegration of the Heifangtai loess[J]. Hydrogeology & Engineering Geology, 2017, 444): 6270. (in Chinese with English abstract) doi:  10.16030/j.cnki.issn.1000-3665.2017.04.10
    [22] 李喜安,郑惠芳,康景辉,等. 黄土地层突涌破坏机理物理模拟[J]. 西安科技大学学报,2010,30(5):560 − 564. [LI Xi’an,ZHENG Huifang,KANG Jinghui,et al. Physical simulation on the mechanism of soil-bursting failure in loess[J]. Journal of Xi’an University of Science and Technology,2010,30(5):560 − 564. (in Chinese with English abstract) doi:  10.13800/j.cnki.xakjdxxb.2010.05.015

    LI Xi’an, ZHENG Huifang, KANG Jinghui, et al. Physical simulation on the mechanism of soil-bursting failure in loess[J]. Journal of Xi’an University of Science and Technology, 2010, 305): 560564. (in Chinese with English abstract) doi:  10.13800/j.cnki.xakjdxxb.2010.05.015
    [23] LI Xi’an,WANG Li,HONG Bo,et al. Erosion characteristics of loess tunnels on the Loess Plateau:a field investigation and experimental study[J]. Earth Surface Processes and Landforms,2020,45(9):1945 − 1958. doi:  10.1002/esp.4857
    [24] WILSON G V. Mechanisms of ephemeral gully erosion caused by constant flow through a continuous soil-pipe[J]. Earth Surface Processes and Landforms,2009,34(14):1858 − 1866. doi:  10.1002/esp.1869
    [25] WILSON G. Understanding soil-pipe flow and its role in ephemeral gully erosion[J]. Hydrological Processes,2011,25(15):2354 − 2364. doi:  10.1002/hyp.7998
    [26] FOX G A,FELICE R G,MIDGLEY T L,et al. Laboratory soil piping and internal erosion experiments:evaluation of a soil piping model for low-compacted soils[J]. Earth Surface Processes and Landforms,2014,39(9):1137 − 1145. doi:  10.1002/esp.3508
    [27] WILSON G V,WELLS R,KUHNLE R,et al. Sediment detachment and transport processes associated with internal erosion of soil pipes[J]. Earth Surface Processes and Landforms,2018,43(1):45 − 63. doi:  10.1002/esp.4147
    [28] BERNATEK-JAKIEL A,POESEN J. Subsurface erosion by soil piping:significance and research needs[J]. Earth-Science Reviews,2018,185:1107 − 1128. doi:  10.1016/j.earscirev.2018.08.006
    [29] JEAN P. Soil erosion in the Anthropocene:research needs[J]. Earth Surface Processes and Landforms,2018,43(1):64 − 84. doi:  10.1002/esp.4250
    [30] BERNATEK-JAKIEL A,NADAL-ROMERO E. Can soil piping impact environment and society? Identifying new research gaps[J]. Earth Surface Processes and Landforms,2023,48(1):72 − 86. doi:  10.1002/esp.5431
    [31] 杨阳. 黄土滑坡裂缝发育特征及其对滑坡孕灾模式的影响——以泾阳南塬黄土滑坡为例[D]. 西安:长安大学,2016. [YANG Yang. Characteristics of cracks in loess landslide and its influence on landslide disaster-prone mode:A case study of loess landslide in Jingyang South Plateau[D]. Xi’an:Changan University,2016. (in Chinese with English abstract)

    YANG Yang. Characteristics of cracks in loess landslide and its influence on landslide disaster-prone mode: A case study of loess landslide in Jingyang South Plateau[D]. Xi’an: Changan University, 2016. (in Chinese with English abstract)
    [32] WAN C F,FELL R. Investigation of rate of erosion of soils in embankment dams[J]. Journal of Geotechnical and Geoenvironmental Engineering,2004,130(4):373 − 380. doi:  10.1061/(ASCE)1090-0241(2004)130:4(373)
    [33] 王根龙,伍法权,祁生文. 悬臂-拉裂式崩塌破坏机制研究[J]. 岩土力学,2012,33(增刊2):269 − 274. [WANG Genlong,WU Faquan,QI Shengwen. Research on failure mechanisms for cantilever and tension crack-type collapse[J]. Rock and Soil Mechanics,2012,33(Sup 2):269 − 274. (in Chinese with English abstract)

    WANG Genlong, WU Faquan, QI Shengwen. Research on failure mechanisms for cantilever and tension crack-type collapse[J]. Rock and Soil Mechanics, 2012, 33(Sup 2): 269 − 274. (in Chinese with English abstract)
    [34] LU Quanzhong,QIAO Jianwei,PENG Jianbing,et al. A typical Earth fissure resulting from loess collapse on the loess plateau in the Weihe Basin,China[J]. Engineering Geology,2019,259:105189. doi:  10.1016/j.enggeo.2019.105189
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  17
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-15
  • 录用日期:  2023-09-06
  • 修回日期:  2022-11-11
  • 网络出版日期:  2023-10-27
  • 刊出日期:  2023-11-15

目录

    /

    返回文章
    返回