ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

川西康定—新都桥段菠茨沟组板岩蠕变特性及损伤模型

何箫 侯圣山 孟宪森 陈亮 刘明学 冯振 李昂 吉锋 郭长宝

何箫,侯圣山,孟宪森,等. 川西康定—新都桥段菠茨沟组板岩蠕变特性及损伤模型[J]. 水文地质工程地质,2023,50(5): 107-116 doi:  10.16030/j.cnki.issn.1000-3665.202209041
引用本文: 何箫,侯圣山,孟宪森,等. 川西康定—新都桥段菠茨沟组板岩蠕变特性及损伤模型[J]. 水文地质工程地质,2023,50(5): 107-116 doi:  10.16030/j.cnki.issn.1000-3665.202209041
HE Xiao, HOU Shengshan, MENG Xiansen, et al. Creep characteristics and nonlinear creep damage model of Bocigou formation slate in Kangding-Xinduqiao section of West Sichuan[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 107-116 doi:  10.16030/j.cnki.issn.1000-3665.202209041
Citation: HE Xiao, HOU Shengshan, MENG Xiansen, et al. Creep characteristics and nonlinear creep damage model of Bocigou formation slate in Kangding-Xinduqiao section of West Sichuan[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 107-116 doi:  10.16030/j.cnki.issn.1000-3665.202209041

川西康定—新都桥段菠茨沟组板岩蠕变特性及损伤模型

doi: 10.16030/j.cnki.issn.1000-3665.202209041
基金项目: 国家重点研发计划项目(2021YFC3000505);中国地质调查局地质调查项目(DD20221748)
详细信息
    作者简介:

    何箫(1999-),男,硕士研究生,主要从事卸荷条件下岩石蠕变劣化特性的研究工作。E-mail:810540839@qq.com

    通讯作者:

    侯圣山(1977-),男,博士,教授级高级工程师,主要从事地质灾害调查监测相关研究。E-mail: houshengshan@mail.cgs.gov.cn

  • 中图分类号: TU45

Creep characteristics and nonlinear creep damage model of Bocigou formation slate in Kangding-Xinduqiao section of West Sichuan

  • 摘要: 岩石的蠕变特性与岩体的长期稳定性有着密切联系。随着我国西部地区各深埋隧道的开挖,为保证工程安全性及地下建筑的长期稳定,迫切需要开展复杂应力状态下岩石蠕变特性的研究。传统的蠕变本构模型难以对岩石加速蠕变阶段进行准确的描述,且现有蠕变模型难以对菠茨沟组板岩的蠕变特性进行有针对性的拟合。因此,选取川西康定—新都桥段菠茨沟组板岩为研究对象,在查明地质环境背景和岩石矿物成分基础上开展了卸荷蠕变试验,分析了菠茨沟组板岩在卸荷条件下的变形特征,揭示了板岩蠕变特性及卸荷过程中的损伤演化规律;考虑卸荷蠕变过程中的损伤累积效应,引入损伤变量,对传统西原模型中牛顿体元件进行改进,建立能描述加速蠕变阶段的蠕变损伤模型。研究表明:卸荷条件下,板岩变形以瞬时弹性应变为主,随偏应力水平增加蠕变现象显著增强;板岩的长期强度有20.2%~27.1%折减;采用1-stOpt对非线性蠕变损伤模型进行参数辨识,拟合理论曲线与试验值吻合度较高,相关系数达到0.945;损伤变量引入后,改进的非线性蠕变损伤模型可以较合理地描述研究区板岩卸荷蠕变特性。该研究可为相关工况下围岩稳定性分析提供理论依据。
  • 图  1  雅安至新都桥区域地质及构造简图(据文献[14]修改)

    注: F1—鲜水河断裂带;F2—龙 门山断前山裂带;F3—龙门山中央断裂;F4—龙门山后山断裂;F5—安宁河断裂;F6—大渡河断裂;F7—玉科断裂;F8—玉龙希断裂;F9—理塘—德巫断裂;F10—小金河断裂;F11—石棉断裂;F12—汉源—甘洛断裂;F13—保新厂—凤仪断裂;F14—荥经—马边—盐津断裂;F15—蒲江—新津断裂;F16—龙泉山断裂

    Figure  1.  Regional geology and tectonic map in the Ya’an-Xinduqiao area (modified from Ref. [14])

    图  2  偏光显微镜下薄片图像

    Figure  2.  Slice image under polarizing microscope

    图  3  YSJ-01-00型岩石三轴蠕变试验机

    Figure  3.  YSJ-01-00 rock triaxial creep testing machine

    图  4  不同初始围压下卸荷蠕变试验围压卸荷路径

    Figure  4.  Unloading path of unloading creep test under different initial confining pressures

    图  5  板岩卸荷蠕变应变-时间曲线

    Figure  5.  Slate unloading creep strain-time curve

    图  6  初始围压7.5 MPa下最后一级卸荷蠕变应变-时间曲线

    Figure  6.  Strain-time curve of the last unloading creep under the initial confining pressure of 7.5 MPa

    图  7  不同初始围压下等时偏应力-应变图

    Figure  7.  Isochronous deviatoric stress-strain diagram under different initial confining pressures

    图  8  不同初始围压下板岩试样卸荷蠕变破坏形态及素描图

    Figure  8.  Unloading creep failure pattern and sketch of slate specimen under different initial confining pressures

    图  9  本构模型原始元件

    注:σ为应力;E为弹性模量;η为黏性系数。

    Figure  9.  Original elements of the constitutive model

    图  10  改进后黏性体元件

    Figure  10.  Improved viscous element

    图  11  变黏性系数西原本构模型

    注:E1为Kelvin模型弹性模量;η1为牛顿体模型黏性系数;σs为屈服强度。

    Figure  11.  West original constitutive model with variable viscosity coefficient

    图  12  围压7.5 MPa下卸荷蠕变与西原改进模型曲线对比

    Figure  12.  Comparison of the unloading creep and the Nishihara improved model curve under the confining pressure of 7.5 MPa

    表  1  各级围压作用下板岩三轴压缩卸荷蠕变试验结果

    Table  1.   Results of the triaxial compression unloading creep test of slate under different confining pressures

    轴向荷载/kN 围压/MPa 瞬时弹性应变 轴向蠕变总量 比值/%
    252.76 7.5 1.629 0.030 1.84
    6.0 0.026 0.006 23.10
    4.5 0.022 0.005 22.70
    3.0 0.021 0.029 138.00
    1.5 0.027 0.008 29.60
    0 0.064 0.019 29.70
    229.50 5.0 2.080 0.051 2.45
    4.0 0.028 0.011 39.30
    3.0 0.021 0.080 38.10
    下载: 导出CSV

    表  2  初始围压7.5 MPa下西原改进模型参数辨识结果

    Table  2.   Parameter identification results of the Nishihara improved model under the initial confining pressure of 7.5 MPa

    参数 $ {\sigma }_{1} $/MPa $ {\sigma }_{3} $/MPa $ {E}_{1} $/GPa $ \eta $/(GPa·h) ${ \eta }_{1}$/(GPa·h) $ \alpha $
    结果 126.38 7.5 4.23 12.97
    126.38 6.0 9.26 0.41
    126.38 4.5 30.94 8.52
    126.38 3.0 3.57 28.98
    126.38 1.5 7.83 2.05
    126.38 0 10.48 2.04 0.016 1.35×108
    下载: 导出CSV
  • [1] 蒋仕荣,虞子楠. 页岩卸荷蠕变的力学特性及其非线性模型[J]. 黑龙江科技大学学报,2021,31(5):585 − 590. [JIANG Shirong,YU Zinan. Unloading creep mechanical properties and nonlinear model of shale[J]. Journal of Heilongjiang University of Science and Technology,2021,31(5):585 − 590. (in Chinese with English abstract)

    JIANG Shirong, YU Zinan. Unloading creep mechanical properties and nonlinear model of shale[J]. Journal of Heilongjiang University of Science and Technology, 2021, 315): 585590. (in Chinese with English abstract)
    [2] 许多,吴世勇,张茹,等. 锦屏深部大理岩蠕变特性及分数阶蠕变模型[J]. 煤炭学报,2019,44(5):1456 − 1464. [XU Duo,WU Shiyong,ZHANG Ru,et al. Creep characteristics and creep model of deep buried marble at Jinping underground laboratory[J]. Journal of China Coal Society,2019,44(5):1456 − 1464. (in Chinese with English abstract)

    XU Duo, WU Shiyong, ZHANG Ru, et al. Creep characteristics and creep model of deep buried marble at Jinping underground laboratory[J]. Journal of China Coal Society, 2019, 445): 14561464. (in Chinese with English abstract)
    [3] YANG Zhihua,GUO Changbao,WU Ruian,et al. Potential seismic landslide hazard and engineering effect in the Ya’an-Linzhi section of the Sichuan-Tibet transportation corridor,China[J]. China Geology,2023,6(1):228 − 240.
    [4] 周瑞鹤,程桦,蔡海兵,等. 三轴压缩分级卸荷条件下粉砂岩蠕变特性及蠕变模型[J]. 岩石力学与工程学报,2022,41(6):1136 − 1147. [ZHOU Ruihe,CHENG Hua,CAI Haibing,et al. Creep characteristics and creep model of siltstone under triaxial compression and graded unloading[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(6):1136 − 1147. (in Chinese with English abstract)

    ZHOU Ruihe, CHENG Hua, CAI Haibing, et al. Creep characteristics and creep model of siltstone under triaxial compression and graded unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 416): 11361147. (in Chinese with English abstract)
    [5] 谢林杰. 砂岩加载与卸荷蠕变特性及非线性黏弹塑性模型研究[D]. 重庆:重庆大学,2017 [XIE Linjie. Loading and unloading creep properties of sandstone and research on a nonlinear viscoelasto-plastic creep model[D]. Chongqing:Chongqing University,2017. (in Chinese with English abstract)

    XIE Linjie. Loading and unloading creep properties of sandstone and research on a nonlinear viscoelasto-plastic creep model[D]. Chongqing: Chongqing University, 2017. (in Chinese with English abstract)
    [6] 李任杰. 非贯通硬性结构面蠕变特性及本构模型研究[D]. 成都:成都理工大学,2020 [LI Renjie. Study on creep characteristics and constitutive model of non-persistent rigid structural surface[D]. Chengdu:Chengdu University of Technology,2020. (in Chinese with English abstract)

    LI Renjie. Study on creep characteristics and constitutive model of non-persistent rigid structural surface[D]. Chengdu: Chengdu University of Technology, 2020. (in Chinese with English abstract)
    [7] 康永刚,张秀娥. 一种改进的岩石蠕变本构模型[J]. 岩土力学,2014,35(4):1049 − 1055. [KANG Yonggang,ZHANG Xiue. An improved constitutive model for rock creep[J]. Rock and Soil Mechanics,2014,35(4):1049 − 1055. (in Chinese with English abstract)

    KANG Yonggang, ZHANG Xiue. An improved constitutive model for rock creep[J]. Rock and Soil Mechanics, 2014, 354): 10491055. (in Chinese with English abstract)
    [8] 崔阿能,胡斌,崔凯,等. 基于应力-时间双阈值条件的岩石黏弹塑性蠕变模型[J]. 公路交通科技,2022,39(2):125 − 132. [CUI Aneng,HU Bin,CUI Kai,et al. A model of rock viscoelastoplastic creep based on double stress-time thresholds[J]. Journal of Highway and Transportation Research and Development,2022,39(2):125 − 132. (in Chinese with English abstract)

    CUI Aneng, HU Bin, CUI Kai, et al. A model of rock viscoelastoplastic creep based on double stress-time thresholds[J]. Journal of Highway and Transportation Research and Development, 2022, 392): 125132. (in Chinese with English abstract)
    [9] 张子洋,曹平,刘智振,等. 泥质粉砂岩蠕变特性及非线性蠕变模型研究[J]. 黄金科学技术,2022,30(3):449 − 459. [ZHANG Ziyang,CAO Ping,LIU Zhizhen,et al. Study on creep characteristics and nonlinear creep model of argillaceous siltstone[J]. Gold Science and Technology,2022,30(3):449 − 459. (in Chinese with English abstract)

    ZHANG Ziyang, CAO Ping, LIU Zhizhen, et al. Study on creep characteristics and nonlinear creep model of argillaceous siltstone[J]. Gold Science and Technology, 2022, 303): 449459. (in Chinese with English abstract)
    [10] 马民杰. 基于岩石损伤和时间硬化理论的岩石蠕变模拟方法[J/OL]. 工业建筑,(2022-03-24)[2022-06-03]. https://doi.org/10.13204/j.gyjzG20122206. [MA Minjie. Rock creep simulation method based on rock damage and time hardening theory[J/OL]. Industrial Construction,(2022-03-24)[2022-06-03]. (in Chinese with English abstract)

    MA Minjie. Rock creep simulation method based on rock damage and time hardening theory[J/OL]. Industrial Construction, (2022-03-24)[2022-06-03]. (in Chinese with English abstract)
    [11] 张志强,朱星宇,刘新华. 橄榄岩蠕变特性及本构模型研究[J]. 岩石力学与工程学报,2022,41(8):1525 − 1535. [ZHANG Zhiqiang,ZHU Xingyu,LIU Xinhua. Study on creep characteristics and constitutive model of peridotite[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(8):1525 − 1535. (in Chinese with English abstract)

    ZHANG Zhiqiang, ZHU Xingyu, LIU Xinhua. Study on creep characteristics and constitutive model of peridotite[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 418): 15251535. (in Chinese with English abstract)
    [12] 刘振,杨圣奇,柏正林,等. 循环加卸载下闪长玢岩蠕变特性及损伤本构模型[J]. 工程科学学报,2022,44(1):143 − 151. [LIU Zhen,YANG Shengqi,BAI Zhenglin,et al. Creep property and damage constitutive model of dioritic porphyrite under cyclic loading-unloading[J]. Chinese Journal of Engineering,2022,44(1):143 − 151. (in Chinese with English abstract)

    LIU Zhen, YANG Shengqi, BAI Zhenglin, et al. Creep property and damage constitutive model of dioritic porphyrite under cyclic loading-unloading[J]. Chinese Journal of Engineering, 2022, 441): 143151. (in Chinese with English abstract)
    [13] 李安润,邓辉,王红娟,等. 水-岩作用下粉砂质泥岩含水损伤本构模型[J]. 水文地质工程地质,2021,48(2):106 − 113. [LI Anrun,DENG Hui,WANG Hongjuan,et al. Constitutive model of water-damaged silty mudstone under water-rock interactions[J]. Hydrogeology & Engineering Geology,2021,48(2):106 − 113. (in Chinese with English abstract)

    LI Anrun, DENG Hui, WANG Hongjuan, et al. Constitutive model of water-damaged silty mudstone under water-rock interactions[J]. Hydrogeology & Engineering Geology, 2021, 482): 106113. (in Chinese with English abstract)
    [14] 任洋,王栋,李天斌,等. 川藏铁路雅安至新都桥段地应力特征及工程效应分析[J]. 岩石力学与工程学报,2021,40(1):65 − 76. [REN Yang,WANG Dong,LI Tianbin,et al. In-situ geostress characteristics and engineering effect in Ya’an—Xinduqiao section of Sichuan—Tibet Railway[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):65 − 76. (in Chinese with English abstract)

    REN Yang, WANG Dong, LI Tianbin, et al. In-situ geostress characteristics and engineering effect in Ya’an—Xinduqiao section of Sichuan—Tibet Railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 401): 6576. (in Chinese with English abstract)
    [15] 长江水利委员会长江科学院.《水利水电工程岩石试验规程》:SL/T 264—2020[S]. 北京:中国水利水电出版社,2020. [Changjiang River Scientific Research Institute. Code forrock testsin waterand hydropowerprojects:SL/T 264—2020[S]. Beijing:China Water & Power Press,2020.(in Chinese)

    Changjiang River Scientific Research Institute. Code forrock testsin waterand hydropowerprojects: SL/T 264—2020[S]. Beijing: China Water & Power Press, 2020.(in Chinese)
    [16] 王空前,谢东武. 不同卸荷路径下的页岩蠕变特性试验研究[J]. 科学技术与工程,2021,21(31):13469 − 13475. [WANG Kongqian,XIE Dongwu. Experimental study on creep characteristics of shale under different unloading paths[J]. Science Technology and Engineering,2021,21(31):13469 − 13475. (in Chinese with English abstract) doi:  10.3969/j.issn.1671-1815.2021.31.035

    WANG Kongqian, XIE Dongwu. Experimental study on creep characteristics of shale under different unloading paths[J]. Science Technology and Engineering, 2021, 2131): 1346913475. (in Chinese with English abstract) doi:  10.3969/j.issn.1671-1815.2021.31.035
    [17] 燕乔,娄毅博,卢红平,等. 水布垭地下洞室燧石灰岩卸荷蠕变特性研究[J]. 地下空间与工程学报,2022,18(增刊1):121 − 125 [YAN Qiao,LOU Yibo,LU Hongping,et al. Study on the unloading creep properties of strontium limestone in shuibuya underground cavern[J]. Chinese Journal of Underground Space and Engineering,2022,18(Sup 1):121 − 125. (in Chinese with English abstract)

    YAN Qiao, LOU Yibo, LU Hongping, et al. Study on the unloading creep properties of strontium limestone in shuibuya underground cavern[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(Sup 1): 121 − 125. (in Chinese with English abstract)
    [18] 杨帅东,谭维佳,方应学. 石英砂岩蠕变力学特性及长期强度研究[J]. 水力发电,2021,47(4):43 − 50. [YANG Shuaidong,TAN Weijia,FANG Yingxue. Study on creep mechanical properties and long-term strength of quartz sandstone[J]. Water Power,2021,47(4):43 − 50. (in Chinese with English abstract) doi:  10.3969/j.issn.0559-9342.2021.04.010

    YANG Shuaidong, TAN Weijia, FANG Yingxue. Study on creep mechanical properties and long-term strength of quartz sandstone[J]. Water Power, 2021, 474): 4350. (in Chinese with English abstract) doi:  10.3969/j.issn.0559-9342.2021.04.010
    [19] 张俊文,霍英昊. 深部砂岩分级增量加卸载蠕变特性[J]. 煤炭学报,2021,46(增刊2):661 − 669 [ZHANG Junwen,HUO Yinghao. Creep behavior of deep sandstones under stepwise incremental loading and unloading conditions[J]. Journal of China Coal Society,2021,46(Sup 2):661 − 669. (in Chinese with English abstract)

    ZHANG Junwen, HUO Yinghao. Creep behavior of deep sandstones under stepwise incremental loading and unloading conditions[J]. Journal of China Coal Society, 2021, 46(Sup 2): 661 − 669. (in Chinese with English abstract)
    [20] 黄兴,刘泉声,康永水,等. 砂质泥岩三轴卸荷蠕变试验研究[J]. 岩石力学与工程学报,2016,35(增刊1):2653 − 2662 [HUANG Xing,LIU Quansheng,KANG Yongshui,et al. Triaxial unloading creep experimental study of sandy mudstone[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(Sup 1):2653 − 2662. (in Chinese with English abstract)

    HUANG Xing, LIU Quansheng, KANG Yongshui, et al. Triaxial unloading creep experimental study of sandy mudstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(Sup 1): 2653 − 2662. (in Chinese with English abstract)
    [21] 唐志强,吉锋,许汉华,等. 豫南燕山期花岗岩蠕变特性及非线性蠕变损伤模型[J]. 科学技术与工程,2022,22(16):6421 − 6429. [TANG Zhiqiang,JI Feng,XU Hanhua,et al. Creep characteristics and nonlinear creep damage model of yanshanian granite in southern Henan[J]. Science Technology and Engineering,2022,22(16):6421 − 6429. (in Chinese with English abstract) doi:  10.3969/j.issn.1671-1815.2022.16.006

    TANG Zhiqiang, JI Feng, XU Hanhua, et al. Creep characteristics and nonlinear creep damage model of yanshanian granite in southern Henan[J]. Science Technology and Engineering, 2022, 2216): 64216429. (in Chinese with English abstract) doi:  10.3969/j.issn.1671-1815.2022.16.006
    [22] 李祖勇,杨更社. 基于蠕变试验的冻结红砂岩长期强度研究[J]. 科学技术与工程,2021,21(23):9976 − 9982. [LI Zuyong,YANG Gengshe. Long-term strength of frozen red sandstone based on creep test[J]. Science Technology and Engineering,2021,21(23):9976 − 9982. (in Chinese with English abstract) doi:  10.3969/j.issn.1671-1815.2021.23.042

    LI Zuyong, YANG Gengshe. Long-term strength of frozen red sandstone based on creep test[J]. Science Technology and Engineering, 2021, 2123): 99769982. (in Chinese with English abstract) doi:  10.3969/j.issn.1671-1815.2021.23.042
    [23] 张黄梅. 不同卸荷路径下泥岩蠕变特性研究[D]. 重庆:重庆交通大学,2019 [ZHANG Huangmei. The creep characteristics research of mudstone under different unloading paths[D]. Chongqing:Chongqing Jiaotong University,2019. (in Chinese with English abstract)

    ZHANG Huangmei. The creep characteristics research of mudstone under different unloading paths[D]. Chongqing: Chongqing Jiaotong University, 2019. (in Chinese with English abstract)
    [24] LI Dejian,LIU Xiaolin,SHAO Yiming,et al. A novel variable-order fractional damage creep model for sandstone[J]. Arabian Journal of Geosciences,2022,15:1073. doi:  10.1007/s12517-022-10350-9
    [25] MA Yukun,YAO Qingchen,WANG Junhao,et al. Time-dependent creep constitutive model of roadway surrounding rock based on creep parameters[J]. Geofluids,2022,2022:7981192.
    [26] YANG Mengze,HUANG Houxu,YANG Yu. Effect of rock loading rate based on crack extension and propagation[J]. Scientific Reports,2022,12:8755. doi:  10.1038/s41598-022-12759-4
    [27] 刘文博,孙博一,陈雷,等. 一种基于弹性能释放率的岩石新型统计损伤本构模型[J]. 水文地质工程地质,2021,48(1):88 − 95. [LIU Wenbo,SUN Boyi,CHEN Lei,et al. A statistical damage constitutive rock model based on elastic energy release rate[J]. Hydrogeology & Engineering Geology,2021,48(1):88 − 95. (in Chinese with English abstract) doi:  10.16030/j.cnki.issn.1000-3665.201910051

    LIU Wenbo, SUN Boyi, CHEN Lei, et al. A statistical damage constitutive rock model based on elastic energy release rate[J]. Hydrogeology & Engineering Geology, 2021, 481): 8895. (in Chinese with English abstract) doi:  10.16030/j.cnki.issn.1000-3665.201910051
    [28] 孙晓明,缪澄宇,姜铭,等. 基于改进西原模型的不同含水率砂岩蠕变实验及理论研究[J]. 岩石力学与工程学报,2021,40(12):2411 − 2420. [SUN Xiaoming,MIAO Chengyu,JIANG Ming,et al. Experimental and theoretical study on creep behaviors of sandstone with different moisture contents based on modified Nishihara model[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(12):2411 − 2420. (in Chinese with English abstract) doi:  10.13722/j.cnki.jrme.2021.0302

    SUN Xiaoming, MIAO Chengyu, JIANG Ming, et al. Experimental and theoretical study on creep behaviors of sandstone with different moisture contents based on modified Nishihara model[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 4012): 24112420. (in Chinese with English abstract) doi:  10.13722/j.cnki.jrme.2021.0302
    [29] 王昊. 考虑累积损伤效应的岩石充填节理动态力学特性试验研究[D]. 西安:长安大学,2020 [WANG Hao. Dynamic mechanics of rock filled joints considering cumulative damage effects characteristic test research[D]. Xi’an:Chang’an University,2020. (in Chinese with English abstract)

    WANG Hao. Dynamic mechanics of rock filled joints considering cumulative damage effects characteristic test research[D]. Xi’an: Chang’an University, 2020. (in Chinese with English abstract)
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  32
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-19
  • 修回日期:  2022-12-01
  • 网络出版日期:  2023-09-19
  • 刊出日期:  2023-09-19

目录

    /

    返回文章
    返回