A study of the influence of the crossing-slope fault geometry on the slope seismic response
-
摘要: 与一般重力环境的滑坡相比,地震诱发滑坡在形成机理、运动特征等方面差异显著。天然和降雨条件下,断层破碎带作为边坡的不连续结构面,往往对斜坡的稳定性产生不利影响。而在地震作用下,边坡内部的断层破碎带存在一定的滤波作用,有可能减弱边坡的地震动响应。为了探究逆断层几何形态对边坡地震动响应的影响,以汶川地震中牛眠沟滑坡、窝前滑坡、谢家店子滑坡及东河口滑坡为研究对象,概化出断层切割型斜坡的地质模型,利用3DEC离散元软件对不同断层破碎带宽度、倾角、位置情况下的斜坡地震动响应进行模拟。模拟结果表明:(1)随着断层倾角增大,斜坡总位移峰值和坡面加速度峰值表现出增大的趋势,斜坡更易失稳;(2)坡顶监测点的峰值加速度一般大于坡底与坡腰的值,随着断层破碎带宽度增大,对斜坡地震动响应的直接影响愈加明显;(3)断层的存在会增加斜坡失稳的可能性,断层位于坡顶时斜坡地震动响应随断层倾角和破碎带宽度变化的规律性更明显。本研究可为深入揭示地震作用下断层破碎带对斜坡稳定性的影响提供理论依据。本研究可为深入揭示地震作用下断层破碎带对斜坡稳定性的影响提供理论依据。Abstract: Compared with the landslides in the general gravity environment, the earthquake-induced landslides are significantly different in formation mechanisms and kinetic characteristics. Under the normal and rainfall conditions, the fault fracture zone, as the discontinuous structural plane of the slope, often adversely affect the stability of the slope. Under the earthquake condition, the fault fracture zone within the slope has a limited filtering effect, which could weaken the seismic response of the slope. To investigate the influence of the reverse fault’s geometry on the slope’s seismic response, we took the Niumiangou landslide, the Woqian landslide, the Xiejiadianzi landslide and the Donghekou landslide as reference objects and generalized the geological model of the fault-crossing landslide in this study. The seismic response of slopes with faults of different widths, dips and positions are simulated using the 3DEC discrete element software. The simulation results show that (1) as the fault dip angle increases, the peak value of the total displacement of the slope and the peak acceleration of the slope surface show an increasing trend, and the slope stability is worse. (2) The peak acceleration of the monitoring point at the top of the slope is generally greater than that at the bottom and waist of the slope. As the width of fault fracture zone increases, the effect on the seismic response of the slope becomes obvious.(3) The presence of faults facilitates the probability of slope instability. When the fault is located at the top of the slope, the variation of the seismic response with the dip angle and the fault width shows a more obvious regularity. This study can provide a theoretical basis for further revealing the impact of fault fracture zone on the stability of slopes under the earthquake condition.
-
表 1 数值模拟试验方案
Table 1. Numerical simulation test scheme
工况 断层破碎带
宽度/m倾角/(°) 断层位置/m x z y2 y1 1 2 0 坡脚 115 0 110.0 110 2 10 113.0 3 20 112.9 4 30 112.7 5 40 112.4 6 0 坡顶 145.0 145 7 10 148.0 8 20 147.9 9 30 147.7 10 40 147.4 11 5 0 坡脚 150 0 110.0 110 12 10 109.9 13 20 109.7 14 30 109.2 15 40 108.5 16 0 坡顶 150 0 145.0 145 17 10 144.9 18 20 144.7 19 30 144.2 20 40 143.5 21 10 0 坡脚 115 0 110.0 110 22 10 104.8 23 20 104.4 24 30 103.5 25 40 101.9 26 0 坡顶 145.0 145 27 10 139.8 28 20 139.4 29 30 138.5 30 40 136.9 注:断层位置的坐标为断层面与斜坡体一侧面的交线的端点坐标,坐标系示意图请参考图5。 表 2 断层与斜坡的物理力学参数
Table 2. Physical and mechanical parameters of faults and slopes
类型 体积模量
/GPa剪切模量
/GPa弹性模量
/GPa内摩擦角
/(°)黏聚力
/kPa密度
/(kg·m−3)基岩 4.16 2.86 10 35 17 2 500 断层 0.00833 0.384 0.3 20 14 2 200 表 3 斜坡动力响应模拟结果
Table 3. Statistics of the slope seismic response
工况 断层破碎
带宽度/m位置 倾角
/(°)监测点 斜坡总位移 工况 断层破碎
带宽度/m位置 倾角
/(°)监测点 斜坡总位移 位置 峰值加速度/(m·s−2) 峰值/m 位置 位置 峰值加速度/(m·s−2) 峰值/m 位置 1 2 坡脚 0 坡顶 3.245 0.355 下盘 16 5 坡顶 0 坡顶 3.449 0.274 下盘 坡腰 2.881 坡腰 2.991 坡底 3.947 坡底 2.566 2 10 坡顶 3.682 0.203 下盘 17 10 坡顶 3.170 0.298 下盘 坡腰 2.206 坡腰 3.352 坡底 4.001 坡底 2.357 3 20 坡顶 3.792 0.632 上盘 18 20 坡顶 2.854 0.612 上盘 坡腰 2.553 坡腰 2.998 坡底 3.338 坡底 2.804 4 30 坡顶 2.903 0.913 下盘 19 30 坡顶 3.334 0.862 上盘 坡腰 2.611 坡腰 3.584 坡底 3.464 坡底 3.574 5 40 坡顶 3.497 0.695 上盘 20 40 坡顶 2.672 0.766 上盘 坡腰 3.158 坡腰 4.793 坡底 4.418 坡底 5.262 6 坡顶 0 坡顶 2.930 0.316 下盘 21 10 坡脚 0 坡顶 3.437 0.263 上盘 坡腰 3.048 坡腰 1.213 坡底 3.230 坡底 2.113 7 10 坡顶 3.389 0.280 上盘 22 10 坡顶 3.876 0.475 上盘 坡腰 3.372 坡腰 2.427 坡底 3.025 坡底 3.136 8 20 坡顶 3.499 0.670 上盘 23 20 坡顶 3.430 0.600 上盘 坡腰 2.951 坡腰 2.004 坡底 4.111 坡底 2.694 9 30 坡顶 3.569 0.887 上盘 24 30 坡顶 3.388 0.882 上盘 坡腰 3.055 坡腰 2.949 坡底 3.534 坡底 3.668 10 40 坡顶 2.807 0.713 上盘 25 40 坡顶 2.766 0.793 上盘 坡腰 3.029 坡腰 3.579 坡底 4.152 坡底 4.421 11 5 坡脚 0 坡顶 3.411 0.348 下盘 26 坡顶 0 坡顶 3.068 0.347 上盘 坡腰 1.896 坡腰 3.811 坡底 2.875 坡底 1.994 12 10 坡顶 3.633 0.161 上盘 27 10 坡顶 3.136 0.272 下盘 坡腰 1.796 坡腰 3.749 坡底 3.013 坡底 2.362 13 20 坡顶 3.529 0.608 上盘 28 20 坡顶 3.154 0.652 上盘 坡腰 2.018 坡腰 5.211 坡底 3.153 坡底 2.728 14 30 坡顶 3.459 0.870 下盘 29 30 坡顶 3.168 0.870 上盘 坡腰 2.296 坡腰 3.233 坡底 3.413 坡底 4.015 15 40 坡顶 3.227 0.771 上盘 30 40 坡顶 2.421 0.724 上盘 坡腰 3.247 坡腰 4.416 坡底 3.892 坡底 5.627 表 4 图例符号说明
Table 4. Explanation of the illustration symbols
图例符号 断层破碎
带宽度/m断层位置 监测点位置 图例符号 断层破碎
带宽度/m断层位置 监测点位置 图例符号 断层破碎
带宽度/m断层位置 监测点位置 2-1-A 2 坡脚 坡顶 5-1-A 5 坡脚 坡顶 10-1-A 10 坡脚 坡顶 2-1-B 坡腰 5-1-B 坡腰 10-1-B 坡腰 2-1-C 坡底 5-1-C 坡底 10-1-C 坡底 2-2-A 坡顶 坡顶 5-2-A 坡顶 坡顶 10-2-A 坡顶 坡顶 2-2-B 坡腰 5-2-B 坡腰 10-2-B 坡腰 2-2-C 坡底 5-2-C 坡底 10-2-C 坡底 -
[1] 黄润秋. 汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J]. 岩石力学与工程学报,2009,28(6):1239 − 1249. [HUANG Runqiu. Mechanism and geomechanical modes of landslide hazards triggered by Wenchuan 8.0 earthquake[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(6):1239 − 1249. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2009.06.021 HUANG Runqiu . Mechanism and geomechanical modes of landslide hazards triggered by Wenchuan 8.0 earthquake[J]. Chinese Journal of Rock Mechanics and Engineering,2009 ,28 (6 ):1239 −1249 . (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2009.06.021[2] QI Shengwen,XU Qiang,LAN Hengxing,et al. Spatial distribution analysis of landslides triggered by 2008.5. 12 Wenchuan Earthquake,China[J]. Engineering Geology,2010,116(1/2):95 − 108. [3] 方华,崔鹏. 汶川地震大型高速远程滑坡力学机理及控制因子分析[J]. 灾害学,2010,25(增刊1):120 − 126. [FANG Hua,CUI Peng. Study on mechanical mechanism and controlling factors of high-speed distant landslides induced by the Wenchuan earthquake[J]. Journal of Catastrophology,2010,25(Sup 1):120 − 126. (in Chinese with English abstract) FANG Hua, CUI Peng. Study on mechanical mechanism and controlling factors of high-speed distant landslides induced by the Wenchuan earthquake[J]. Journal of Catastrophology, 2010, 25(Sup 1): 120 − 126. (in Chinese with English abstract) [4] JIBSON R W,HARP E L,SCHULZ W,et al. Large rock avalanches triggered by the M 7.9 Denali Fault,Alaska,earthquake of 3 November 2002[J]. Engineering Geology,2006,83(1/2/3):144 − 160. [5] 黄润秋,李为乐. 汶川大地震触发地质灾害的断层效应分析[J]. 工程地质学报,2009,17(1):19 − 28. [HUANG Runqiu,LI Weile. Fault effect analysis of geo-hazard triggered by Wenchaun earthquake[J]. Journal of Engineering Geology,2009,17(1):19 − 28. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2009.01.003 HUANG Runqiu, LI Weile . Fault effect analysis of geo-hazard triggered by Wenchaun earthquake[J]. Journal of Engineering Geology,2009 ,17 (1 ):19 −28 . (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2009.01.003[6] 陈晓利,邓俭良,冉洪流. 汶川地震滑坡崩塌的空间分布特征[J]. 地震地质,2011,33(1):191 − 202. [CHEN Xiaoli,DENG Jianliang,RAN Hongliu. Analysis of landslides triggered by Wenchuan earthquake[J]. Seismology and Geology,2011,33(1):191 − 202. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2011.01.018 CHEN Xiaoli, DENG Jianliang, RAN Hongliu . Analysis of landslides triggered by Wenchuan earthquake[J]. Seismology and Geology,2011 ,33 (1 ):191 −202 . (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2011.01.018[7] 蒋瑶,吴中海,刘艳辉,等. 青海玉树活动断裂带的多期古地震滑坡及其年龄[J]. 地质通报,2014,33(4):503 − 516. [JIANG Yao,WU Zhonghai,LIU Yanhui,et al. The characteristics of palaeo-earthquake landslides along Yushu faulted zone and their ages[J]. Geological Bulletin of China,2014,33(4):503 − 516. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-2552.2014.04.007 JIANG Yao, WU Zhonghai, LIU Yanhui, et al . The characteristics of palaeo-earthquake landslides along Yushu faulted zone and their ages[J]. Geological Bulletin of China,2014 ,33 (4 ):503 −516 . (in Chinese with English abstract) doi: 10.3969/j.issn.1671-2552.2014.04.007[8] 杨志华,郭长宝,吴瑞安,等. 青藏高原巴塘断裂带地震滑坡危险性预测研究[J]. 水文地质工程地质,2021,48(5):91 − 101. [YANG Zhihua,GUO Changbao,WU Ruian,et al. Predicting seismic landslide hazard in the Batang fault zone of the Qinghai-Tibet Plateau[J]. Hydrogeology & Engineering Geology,2021,48(5):91 − 101. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202009024 YANG Zhihua, GUO Changbao, WU Ruian, et al . Predicting seismic landslide hazard in the Batang fault zone of the Qinghai-Tibet Plateau[J]. Hydrogeology & Engineering Geology,2021 ,48 (5 ):91 −101 . (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202009024[9] 李光辉,铁永波,白永建,等. 则木河断裂带(普格段)地质灾害发育规律及易发性评价[J]. 中国地质灾害与防治学报,2022,33(3):123 − 133. [LI Guanghui,TIE Yongbo,BAI Yongjian,et al. Distribution and susceptibility assessment of geological hazards in Zemuhe fault zone(Puge section)[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):123 − 133. (in Chinese with English abstract) LI Guanghui, TIE Yongbo, BAI Yongjian, et al . Distribution and susceptibility assessment of geological hazards in Zemuhe fault zone(Puge section)[J]. The Chinese Journal of Geological Hazard and Control,2022 ,33 (3 ):123 −133 . (in Chinese with English abstract)[10] 毕鸿基,聂磊,曾超,等. 基于三种多变量不安定指数分析模型的汶川县地质灾害易发性评价[J]. 中国地质灾害与防治学报,2022,33(1):123 − 131. [BI Hongji,NIE Lei,ZENG Chao,et al. Geological hazard susceptibility evaluation in Wenchuan area based on three models of multivariate instability index analysis[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):123 − 131. (in Chinese with English abstract) BI Hongji, NIE Lei, ZENG Chao, et al . Geological hazard susceptibility evaluation in Wenchuan area based on three models of multivariate instability index analysis[J]. The Chinese Journal of Geological Hazard and Control,2022 ,33 (1 ):123 −131 . (in Chinese with English abstract)[11] OGLESBY D D. Fault geometry and the dynamics of the 1999 Chi-Chi (taiwan) earthquake[J]. Bulletin of the Seismological Society of America,2004,91(5):1099 − 1111. doi: 10.1785/0120000714 [12] 王文沛,李滨,李洪涛. 断层穿越斜坡场地效应分析:以绵竹九龙镇山前斜坡为例[J]. 工程地质学报,2015,23(5):850 − 855. [WANG Wenpei,LI Bin,LI Hongtao. Site effects of slope passed by fault on PGA,a case study at Mianzhu Jiulong town[J]. Journal of Engineering Geology,2015,23(5):850 − 855. (in Chinese with English abstract) WANG Wenpei, LI Bin, LI Hongtao . Site effects of slope passed by fault on PGA, a case study at Mianzhu Jiulong town[J]. Journal of Engineering Geology,2015 ,23 (5 ):850 −855 . (in Chinese with English abstract)[13] 许冲. 环境地球科学之滑坡地震地质学[J]. 工程地质学报,2018,26(1):207 − 222. [XU Chong. Landslide seismology geology:A sub-discipline of environmental earth sciences[J]. Journal of Engineering Geology,2018,26(1):207 − 222. (in Chinese with English abstract) XU Chong . Landslide seismology geology: A sub-discipline of environmental earth sciences[J]. Journal of Engineering Geology,2018 ,26 (1 ):207 −222 . (in Chinese with English abstract)[14] JIBSON R W,HARP E L. Landslides triggered by the Northridge earthquake[J]. Earthquake & Volcanoes,1994,5l-41. [15] WANG Wenneng,WU H L,NAKAMURA H,et al. Mass movements caused by recent tectonic activity:the 1999 Chi-Chi earthquake in central Taiwan [J]. Island Arc,2003,12(4):325 − 334. doi: 10.1046/j.1440-1738.2003.00400.x [16] WANG H B,SASSA K,XU W Y. Analysis of a spatial distribution of landslides triggered by the 2004 Chuetsu earthquakes of Niigata Prefecture,Japan[J]. Natural Hazards,2007,41(1):43 − 60. doi: 10.1007/s11069-006-9009-x [17] 汤明高,许强,张伟,等. 汶川地震触发窝前滑坡特征及失稳机制探讨[J]. 岩石力学与工程学报,2011,30(增刊2):3491 − 3502. [TANG Minggao,XU Qiang,ZHANG Wei,et al. Discuss on failure mechanism and geologic characteristic of Woqian landslide triggered by Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(Sup 2):3491 − 3502. (in Chinese with English abstract) TANG Minggao, XU Qiang, ZHANG Wei, et al. Discuss on failure mechanism and geologic characteristic of Woqian landslide triggered by Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Sup 2): 3491 − 3502. (in Chinese with English abstract) [18] YIN Yueping,LI Bin,WANG Wenpei. Dynamic analysis of the stabilized Wangjiayan landslide in the Wenchuan Ms 8.0 earthquake and aftershocks[J]. Landslides,2015,12(3):537 − 547. doi: 10.1007/s10346-014-0497-6 [19] 郭沉稳,姚令侃,段书苏,等. 汶川、芦山、尼泊尔地震触发崩塌滑坡分布规律[J]. 西南交通大学学报,2016,51(1):71 − 77. [GUO Chenwen,YAO Lingkan,DUAN Shusu,et al. Distribution regularities of landslides induced by Wenchuan earthquake,Lushan earthquake and Nepal earthquake[J]. Journal of Southwest Jiaotong University,2016,51(1):71 − 77. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-2724.2016.01.011 GUO Chenwen, YAO Lingkan, DUAN Shusu, et al . Distribution regularities of landslides induced by Wenchuan earthquake, Lushan earthquake and Nepal earthquake[J]. Journal of Southwest Jiaotong University,2016 ,51 (1 ):71 −77 . (in Chinese with English abstract) doi: 10.3969/j.issn.0258-2724.2016.01.011[20] 张冬丽,周正华,陶夏新. 震源破裂方式和断层性质对近场强地震动特征的影响[J]. 西北地震学报,2009,31(4):311 − 318. [ZHANG Dongli,ZHOU Zhenghua,TAO Xiaxin. Influence of seismic source mechanism and fault property on near-field strong ground motion[J]. Northwestern Seismological Journal,2009,31(4):311 − 318. (in Chinese with English abstract) ZHANG Dongli, ZHOU Zhenghua, TAO Xiaxin . Influence of seismic source mechanism and fault property on near-field strong ground motion[J]. Northwestern Seismological Journal,2009 ,31 (4 ):311 −318 . (in Chinese with English abstract)[21] 许强,李为乐. 汶川地震诱发大型滑坡分布规律研究[J]. 工程地质学报,2010,18(6):818 − 826. [XU Qiang,LI Weile. Distribution of large-scale landslides induced by the Wenchuan earthquake[J]. Journal of Engineering Geology,2010,18(6):818 − 826. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2010.06.002 XU Qiang, LI Weile . Distribution of large-scale landslides induced by the Wenchuan earthquake[J]. Journal of Engineering Geology,2010 ,18 (6 ):818 −826 . (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2010.06.002[22] 杨琴,范宣梅,许强,等. 北川唐家湾滑坡变形历史与形成机制研究[J]. 水文地质工程地质,2018,45(2):136 − 141. [YANG Qin,FAN Xuanmei,XU Qiang,et al. A study of the deformation history and mechanism of the Tangjiawan landslide[J]. Hydrogeology & Engineering Geology,2018,45(2):136 − 141. (in Chinese with English abstract) YANG Qin, FAN Xuanmei, XU Qiang, et al . A study of the deformation history and mechanism of the Tangjiawan landslide[J]. Hydrogeology & Engineering Geology,2018 ,45 (2 ):136 −141 . (in Chinese with English abstract)[23] 毕钰璋,付跃升,何思明,等. 牛眠沟地震滑坡碎屑化全过程离散元模拟[J]. 中国地质灾害与防治学报,2015,26(3):17 − 25. [BI Yuzhang,FU Yuesheng,HE Siming,et al. Simulation of the whole process of Niumiangou creek rock avalanche triggered by the earthquake using a distinct element method[J]. The Chinese Journal of Geological Hazard and Control,2015,26(3):17 − 25. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2015.03.04 BI Yuzhang, FU Yuesheng, HE Siming, et al . Simulation of the whole process of Niumiangou creek rock avalanche triggered by the earthquake using a distinct element method[J]. The Chinese Journal of Geological Hazard and Control,2015 ,26 (3 ):17 −25 . (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2015.03.04[24] 苏生瑞,张永双,李松,等. 汶川地震引发高速远程滑坡运动机理数值模拟研究——以谢家店子滑坡为例[J]. 地球科学与环境学报,2010,32(3):277 − 287. [SU Shengrui,ZHANG Yongshuang,LI Song,et al. Numerical analysis on motion mechanism of highspeed and long runout landslide by Wenchuan earthquake:Taking xiejiadianzi landslide as an example[J]. Journal of Earth Sciences and Environment,2010,32(3):277 − 287. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-6561.2010.03.011 SU Shengrui, ZHANG Yongshuang, LI Song, et al . Numerical analysis on motion mechanism of highspeed and long runout landslide by Wenchuan earthquake: Taking xiejiadianzi landslide as an example[J]. Journal of Earth Sciences and Environment,2010 ,32 (3 ):277 −287 . (in Chinese with English abstract) doi: 10.3969/j.issn.1672-6561.2010.03.011[25] 孙萍,张永双,殷跃平,等. 东河口滑坡-碎屑流高速远程运移机制探讨[J]. 工程地质学报,2009,17(6):737 − 744. [SUN Ping,ZHANG Yongshuang,YIN Yueping,et al. Discussion on long Run-out sliding mechanism of donghekou landslide-debris flow[J]. Journal of Engineering Geology,2009,17(6):737 − 744. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2009.06.002 SUN Ping, ZHANG Yongshuang, YIN Yueping, et al . Discussion on long Run-out sliding mechanism of donghekou landslide-debris flow[J]. Journal of Engineering Geology,2009 ,17 (6 ):737 −744 . (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2009.06.002[26] 贺小黑,谭建民,裴来政. 断层对地质灾害的影响——以安化地区为例[J]. 中国地质灾害与防治学报,2017,28(3):150 − 155. [HE Xiaohei,TAN Jianmin,PEI Laizheng. Influence of faults on geohazards:Take Anhua County as an example[J]. The Chinese Journal of Geological Hazard and Control,2017,28(3):150 − 155. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2017.03.23 HE Xiaohei, TAN Jianmin, PEI Laizheng . Influence of faults on geohazards: Take Anhua County as an example[J]. The Chinese Journal of Geological Hazard and Control,2017 ,28 (3 ):150 −155 . (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2017.03.23[27] 汤明高,许强,黄润秋,等. 小湾水电工程6#山梁节理岩体高边坡3DEC分析[J]. 水文地质工程地质,2006,33(3):57 − 60. [TANG Minggao,XU Qiang,HUANG Runqiu,et al. 3DEC analysis on 6# high rock slope with joints in Xiaowan Hydropower Project[J]. Hydrogeology & Engineering Geology,2006,33(3):57 − 60. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2006.03.014 TANG Minggao, XU Qiang, HUANG Runqiu, et al . 3DEC analysis on 6# high rock slope with joints in Xiaowan Hydropower Project[J]. Hydrogeology & Engineering Geology,2006 ,33 (3 ):57 −60 . (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2006.03.014[28] Itasca Consulting Group Inc. 3DEC—Three-Dimensional Distinct Element Code (Version 5.2) [R]. 2016. [29] BOWA V M,XIA Yuanyou,YAN Minjia,et al. Toppling of the jointed rock slope with counter-tilted weak planes influenced by the response to local earthquakes[J]. International Journal of Mining and Mineral Engineering,2018,9(4):302. doi: 10.1504/IJMME.2018.097427 [30] MREYEN A S,DONATI D,ELMO D,et al. Dynamic numerical modelling of co-seismic landslides using the 3D distinct element method:insights from the Balta rockslide (Romania)[J]. Engineering Geology,2022,307:106774. doi: 10.1016/j.enggeo.2022.106774 [31] 魏进兵, 何治良, 杨仲康. 考虑地震危险性的倾倒变形边坡风险定量分析[J]. 地质科技通报,2022,41(2):71 − 78. [WEI Jinbing, HE Zhiliang, YANG Zhongkang. Quantitative risk analysis of toppling slope considering seismic risk[J]. Bulletin of Geological Science and Technology,2022,41(2):71 − 78.(in Chinese with English abstract) WEI Jinbing, HE Zhiliang, YANG Zhongkang . Quantitative risk analysis of toppling slope considering seismic risk[J]. Bulletin of Geological Science and Technology,2022 ,41 (2 ):71 −78 .(in Chinese with English abstract) -