ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

切割斜坡断层的几何形态对斜坡地震响应影响研究

王志民 罗刚 王媛 胡卸文 陈仕阔

王志民,罗刚,王媛,等. 切割斜坡断层的几何形态对斜坡地震响应影响研究[J]. 水文地质工程地质,2023,50(6): 147-157 doi:  10.16030/j.cnki.issn.1000-3665.202209030
引用本文: 王志民,罗刚,王媛,等. 切割斜坡断层的几何形态对斜坡地震响应影响研究[J]. 水文地质工程地质,2023,50(6): 147-157 doi:  10.16030/j.cnki.issn.1000-3665.202209030
WANG Zhimin, LUO Gang, WANG Yuan, et al. A study of the influence of the crossing-slope fault geometry on the slope seismic response[J]. Hydrogeology & Engineering Geology, 2023, 50(6): 147-157 doi:  10.16030/j.cnki.issn.1000-3665.202209030
Citation: WANG Zhimin, LUO Gang, WANG Yuan, et al. A study of the influence of the crossing-slope fault geometry on the slope seismic response[J]. Hydrogeology & Engineering Geology, 2023, 50(6): 147-157 doi:  10.16030/j.cnki.issn.1000-3665.202209030

切割斜坡断层的几何形态对斜坡地震响应影响研究

doi: 10.16030/j.cnki.issn.1000-3665.202209030
基金项目: 国家自然科学基金项目(42277143);国家重点研发计划项目(2022YFC3005704);四川省国土资源厅科技项目(KJ-2023-004;KJ-2023-025)
详细信息
    作者简介:

    王志民(1999-),男,硕士研究生,主要从事地质工程方面的研究工作。E-mail:1165769800@qq.com

    通讯作者:

    罗刚(1984-),男,博士,副教授,博士生导师,主要从事地质工程和地质灾害方面的科研与教学工作。E-mail:luogang@home.swjtu.edu.cn

  • 中图分类号: P642.22

A study of the influence of the crossing-slope fault geometry on the slope seismic response

Funds: Supported by:National Natural Science Foundation of China (42277143); National Key R&D Program of China (2022YFC3005704); Science and Technology Program of Sichuan Provincial Land and Resources Department (KJ-2023-004,KJ-2023-025)。
  • 摘要: 与一般重力环境的滑坡相比,地震诱发滑坡在形成机理、运动特征等方面差异显著。天然和降雨条件下,断层破碎带作为边坡的不连续结构面,往往对斜坡的稳定性产生不利影响。而在地震作用下,边坡内部的断层破碎带存在一定的滤波作用,有可能减弱边坡的地震动响应。为了探究逆断层几何形态对边坡地震动响应的影响,以汶川地震中牛眠沟滑坡、窝前滑坡、谢家店子滑坡及东河口滑坡为研究对象,概化出断层切割型斜坡的地质模型,利用3DEC离散元软件对不同断层破碎带宽度、倾角、位置情况下的斜坡地震动响应进行模拟。模拟结果表明:(1)随着断层倾角增大,斜坡总位移峰值和坡面加速度峰值表现出增大的趋势,斜坡更易失稳;(2)坡顶监测点的峰值加速度一般大于坡底与坡腰的值,随着断层破碎带宽度增大,对斜坡地震动响应的直接影响愈加明显;(3)断层的存在会增加斜坡失稳的可能性,断层位于坡顶时斜坡地震动响应随断层倾角和破碎带宽度变化的规律性更明显。本研究可为深入揭示地震作用下断层破碎带对斜坡稳定性的影响提供理论依据。本研究可为深入揭示地震作用下断层破碎带对斜坡稳定性的影响提供理论依据。
  • 图  1  牛眠沟滑坡剖面图(据文献[23]修改)

    Figure  1.  Geological profile of the Niumiangou landslide (modified after Ref.[23])

    图  2  窝前滑坡剖面图(据文献[17]修改)

    Figure  2.  Geological profile of the Woqian landslide (modified after Ref.[17])

    图  3  谢家店子滑坡剖面图(据文献[24]修改)

    Figure  3.  Geological profile of the Xiejiadianzi landslide (modified after Ref.[24])

    图  4  东河口滑坡剖面图(据文献[25]修改)

    Figure  4.  Geological profile of the Donghekou landslide (modified after Ref.[25])

    图  5  斜坡模型及监测点布置示意图

    Figure  5.  Schematic diagram of the slope model and monitoring points layout

    图  6  地震动加速度时程曲线

    Figure  6.  Ground motion acceleration time - history curve

    图  7  工况4数值模拟结果

    Figure  7.  Simulation results under operation condition 4

    图  8  斜坡总位移峰值随断层倾角变化趋势

    Figure  8.  Trend of the peak displacement of the slope vs the dip angle of fault

    图  9  加速度峰值随断层倾角的变化曲线

    Figure  9.  Trend of the peak acceleration vs the dip angle of fault

    图  10  断层位于坡体不同位置总位移峰值分布气泡图

    Figure  10.  Bubble diagram of the peak displacement vs the fault position on slope

    图  11  断层位于坡体不同位置加速度峰值分布气泡图

    Figure  11.  Bubble diagram of the peak acceleration vs the fault position on slope

    图  12  不同断层破碎带宽度下斜坡总位移峰值

    Figure  12.  Peak displacement of the slope under different fault widths

    图  13  加速度峰值随断层倾角的变化

    Figure  13.  Trend of the peak acceleration vs the dip angle of fault

    表  1  数值模拟试验方案

    Table  1.   Numerical simulation test scheme

    工况 断层破碎带
    宽度/m
    倾角/(°) 断层位置/m
    x z y2 y1
    1 2 0 坡脚 115 0 110.0 110
    2 10 113.0
    3 20 112.9
    4 30 112.7
    5 40 112.4
    6 0 坡顶 145.0 145
    7 10 148.0
    8 20 147.9
    9 30 147.7
    10 40 147.4
    11 5 0 坡脚 150 0 110.0 110
    12 10 109.9
    13 20 109.7
    14 30 109.2
    15 40 108.5
    16 0 坡顶 150 0 145.0 145
    17 10 144.9
    18 20 144.7
    19 30 144.2
    20 40 143.5
    21 10 0 坡脚 115 0 110.0 110
    22 10 104.8
    23 20 104.4
    24 30 103.5
    25 40 101.9
    26 0 坡顶 145.0 145
    27 10 139.8
    28 20 139.4
    29 30 138.5
    30 40 136.9
      注:断层位置的坐标为断层面与斜坡体一侧面的交线的端点坐标,坐标系示意图请参考图5
    下载: 导出CSV

    表  2  断层与斜坡的物理力学参数

    Table  2.   Physical and mechanical parameters of faults and slopes

    类型 体积模量
    /GPa
    剪切模量
    /GPa
    弹性模量
    /GPa
    内摩擦角
    /(°)
    黏聚力
    /kPa
    密度
    /(kg·m−3
    基岩 4.16 2.86 10 35 17 2 500
    断层 0.00833 0.384 0.3 20 14 2 200
    下载: 导出CSV

    表  3  斜坡动力响应模拟结果

    Table  3.   Statistics of the slope seismic response

    工况断层破碎
    带宽度/m
    位置倾角
    /(°)
    监测点斜坡总位移工况断层破碎
    带宽度/m
    位置倾角
    /(°)
    监测点斜坡总位移
    位置峰值加速度/(m·s−2峰值/m位置位置峰值加速度/(m·s−2峰值/m位置
    12坡脚0坡顶3.2450.355下盘165坡顶0坡顶3.4490.274下盘
    坡腰2.881坡腰2.991
    坡底3.947坡底2.566
    210坡顶3.6820.203下盘1710坡顶3.1700.298下盘
    坡腰2.206坡腰3.352
    坡底4.001坡底2.357
    320坡顶3.7920.632上盘1820坡顶2.8540.612上盘
    坡腰2.553坡腰2.998
    坡底3.338坡底2.804
    430坡顶2.9030.913下盘1930坡顶3.3340.862上盘
    坡腰2.611坡腰3.584
    坡底3.464坡底3.574
    540坡顶3.4970.695上盘2040坡顶2.6720.766上盘
    坡腰3.158坡腰4.793
    坡底4.418坡底5.262
    6坡顶0坡顶2.9300.316下盘2110坡脚0坡顶3.4370.263上盘
    坡腰3.048坡腰1.213
    坡底3.230坡底2.113
    710坡顶3.3890.280上盘2210坡顶3.8760.475上盘
    坡腰3.372坡腰2.427
    坡底3.025坡底3.136
    820坡顶3.4990.670上盘2320坡顶3.4300.600上盘
    坡腰2.951坡腰2.004
    坡底4.111坡底2.694
    930坡顶3.5690.887上盘2430坡顶3.3880.882上盘
    坡腰3.055坡腰2.949
    坡底3.534坡底3.668
    1040坡顶2.8070.713上盘2540坡顶2.7660.793上盘
    坡腰3.029坡腰3.579
    坡底4.152坡底4.421
    115坡脚0坡顶3.4110.348下盘26坡顶0坡顶3.0680.347上盘
    坡腰1.896坡腰3.811
    坡底2.875坡底1.994
    1210坡顶3.6330.161上盘2710坡顶3.1360.272下盘
    坡腰1.796坡腰3.749
    坡底3.013坡底2.362
    1320坡顶3.5290.608上盘2820坡顶3.1540.652上盘
    坡腰2.018坡腰5.211
    坡底3.153坡底2.728
    1430坡顶3.4590.870下盘2930坡顶3.1680.870上盘
    坡腰2.296坡腰3.233
    坡底3.413坡底4.015
    1540坡顶3.2270.771上盘3040坡顶2.4210.724上盘
    坡腰3.247坡腰4.416
    坡底3.892坡底5.627
    下载: 导出CSV

    表  4  图例符号说明

    Table  4.   Explanation of the illustration symbols

    图例符号断层破碎
    带宽度/m
    断层位置监测点位置图例符号断层破碎
    带宽度/m
    断层位置监测点位置图例符号断层破碎
    带宽度/m
    断层位置监测点位置
    2-1-A2坡脚坡顶5-1-A5坡脚坡顶10-1-A10坡脚坡顶
    2-1-B坡腰5-1-B坡腰10-1-B坡腰
    2-1-C坡底5-1-C坡底10-1-C坡底
    2-2-A坡顶坡顶5-2-A坡顶坡顶10-2-A坡顶坡顶
    2-2-B坡腰5-2-B坡腰10-2-B坡腰
    2-2-C坡底5-2-C坡底10-2-C坡底
    下载: 导出CSV
  • [1] 黄润秋. 汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J]. 岩石力学与工程学报,2009,28(6):1239 − 1249. [HUANG Runqiu. Mechanism and geomechanical modes of landslide hazards triggered by Wenchuan 8.0 earthquake[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(6):1239 − 1249. (in Chinese with English abstract) doi:  10.3321/j.issn:1000-6915.2009.06.021

    HUANG Runqiu. Mechanism and geomechanical modes of landslide hazards triggered by Wenchuan 8.0 earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 286): 12391249. (in Chinese with English abstract) doi:  10.3321/j.issn:1000-6915.2009.06.021
    [2] QI Shengwen,XU Qiang,LAN Hengxing,et al. Spatial distribution analysis of landslides triggered by 2008.5. 12 Wenchuan Earthquake,China[J]. Engineering Geology,2010,116(1/2):95 − 108.
    [3] 方华,崔鹏. 汶川地震大型高速远程滑坡力学机理及控制因子分析[J]. 灾害学,2010,25(增刊1):120 − 126. [FANG Hua,CUI Peng. Study on mechanical mechanism and controlling factors of high-speed distant landslides induced by the Wenchuan earthquake[J]. Journal of Catastrophology,2010,25(Sup 1):120 − 126. (in Chinese with English abstract)

    FANG Hua, CUI Peng. Study on mechanical mechanism and controlling factors of high-speed distant landslides induced by the Wenchuan earthquake[J]. Journal of Catastrophology, 2010, 25(Sup 1): 120 − 126. (in Chinese with English abstract)
    [4] JIBSON R W,HARP E L,SCHULZ W,et al. Large rock avalanches triggered by the M 7.9 Denali Fault,Alaska,earthquake of 3 November 2002[J]. Engineering Geology,2006,83(1/2/3):144 − 160.
    [5] 黄润秋,李为乐. 汶川大地震触发地质灾害的断层效应分析[J]. 工程地质学报,2009,17(1):19 − 28. [HUANG Runqiu,LI Weile. Fault effect analysis of geo-hazard triggered by Wenchaun earthquake[J]. Journal of Engineering Geology,2009,17(1):19 − 28. (in Chinese with English abstract) doi:  10.3969/j.issn.1004-9665.2009.01.003

    HUANG Runqiu, LI Weile. Fault effect analysis of geo-hazard triggered by Wenchaun earthquake[J]. Journal of Engineering Geology, 2009, 171): 1928. (in Chinese with English abstract) doi:  10.3969/j.issn.1004-9665.2009.01.003
    [6] 陈晓利,邓俭良,冉洪流. 汶川地震滑坡崩塌的空间分布特征[J]. 地震地质,2011,33(1):191 − 202. [CHEN Xiaoli,DENG Jianliang,RAN Hongliu. Analysis of landslides triggered by Wenchuan earthquake[J]. Seismology and Geology,2011,33(1):191 − 202. (in Chinese with English abstract) doi:  10.3969/j.issn.0253-4967.2011.01.018

    CHEN Xiaoli, DENG Jianliang, RAN Hongliu. Analysis of landslides triggered by Wenchuan earthquake[J]. Seismology and Geology, 2011, 331): 191202. (in Chinese with English abstract) doi:  10.3969/j.issn.0253-4967.2011.01.018
    [7] 蒋瑶,吴中海,刘艳辉,等. 青海玉树活动断裂带的多期古地震滑坡及其年龄[J]. 地质通报,2014,33(4):503 − 516. [JIANG Yao,WU Zhonghai,LIU Yanhui,et al. The characteristics of palaeo-earthquake landslides along Yushu faulted zone and their ages[J]. Geological Bulletin of China,2014,33(4):503 − 516. (in Chinese with English abstract) doi:  10.3969/j.issn.1671-2552.2014.04.007

    JIANG Yao, WU Zhonghai, LIU Yanhui, et al. The characteristics of palaeo-earthquake landslides along Yushu faulted zone and their ages[J]. Geological Bulletin of China, 2014, 334): 503516. (in Chinese with English abstract) doi:  10.3969/j.issn.1671-2552.2014.04.007
    [8] 杨志华,郭长宝,吴瑞安,等. 青藏高原巴塘断裂带地震滑坡危险性预测研究[J]. 水文地质工程地质,2021,48(5):91 − 101. [YANG Zhihua,GUO Changbao,WU Ruian,et al. Predicting seismic landslide hazard in the Batang fault zone of the Qinghai-Tibet Plateau[J]. Hydrogeology & Engineering Geology,2021,48(5):91 − 101. (in Chinese with English abstract) doi:  10.16030/j.cnki.issn.1000-3665.202009024

    YANG Zhihua, GUO Changbao, WU Ruian, et al. Predicting seismic landslide hazard in the Batang fault zone of the Qinghai-Tibet Plateau[J]. Hydrogeology & Engineering Geology, 2021, 485): 91101. (in Chinese with English abstract) doi:  10.16030/j.cnki.issn.1000-3665.202009024
    [9] 李光辉,铁永波,白永建,等. 则木河断裂带(普格段)地质灾害发育规律及易发性评价[J]. 中国地质灾害与防治学报,2022,33(3):123 − 133. [LI Guanghui,TIE Yongbo,BAI Yongjian,et al. Distribution and susceptibility assessment of geological hazards in Zemuhe fault zone(Puge section)[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):123 − 133. (in Chinese with English abstract)

    LI Guanghui, TIE Yongbo, BAI Yongjian, et al. Distribution and susceptibility assessment of geological hazards in Zemuhe fault zone(Puge section)[J]. The Chinese Journal of Geological Hazard and Control, 2022, 333): 123133. (in Chinese with English abstract)
    [10] 毕鸿基,聂磊,曾超,等. 基于三种多变量不安定指数分析模型的汶川县地质灾害易发性评价[J]. 中国地质灾害与防治学报,2022,33(1):123 − 131. [BI Hongji,NIE Lei,ZENG Chao,et al. Geological hazard susceptibility evaluation in Wenchuan area based on three models of multivariate instability index analysis[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):123 − 131. (in Chinese with English abstract)

    BI Hongji, NIE Lei, ZENG Chao, et al. Geological hazard susceptibility evaluation in Wenchuan area based on three models of multivariate instability index analysis[J]. The Chinese Journal of Geological Hazard and Control, 2022, 331): 123131. (in Chinese with English abstract)
    [11] OGLESBY D D. Fault geometry and the dynamics of the 1999 Chi-Chi (taiwan) earthquake[J]. Bulletin of the Seismological Society of America,2004,91(5):1099 − 1111. doi:  10.1785/0120000714
    [12] 王文沛,李滨,李洪涛. 断层穿越斜坡场地效应分析:以绵竹九龙镇山前斜坡为例[J]. 工程地质学报,2015,23(5):850 − 855. [WANG Wenpei,LI Bin,LI Hongtao. Site effects of slope passed by fault on PGA,a case study at Mianzhu Jiulong town[J]. Journal of Engineering Geology,2015,23(5):850 − 855. (in Chinese with English abstract)

    WANG Wenpei, LI Bin, LI Hongtao. Site effects of slope passed by fault on PGA, a case study at Mianzhu Jiulong town[J]. Journal of Engineering Geology, 2015, 235): 850855. (in Chinese with English abstract)
    [13] 许冲. 环境地球科学之滑坡地震地质学[J]. 工程地质学报,2018,26(1):207 − 222. [XU Chong. Landslide seismology geology:A sub-discipline of environmental earth sciences[J]. Journal of Engineering Geology,2018,26(1):207 − 222. (in Chinese with English abstract)

    XU Chong. Landslide seismology geology: A sub-discipline of environmental earth sciences[J]. Journal of Engineering Geology, 2018, 261): 207222. (in Chinese with English abstract)
    [14] JIBSON R W,HARP E L. Landslides triggered by the Northridge earthquake[J]. Earthquake & Volcanoes,1994,5l-41.
    [15] WANG Wenneng,WU H L,NAKAMURA H,et al. Mass movements caused by recent tectonic activity:the 1999 Chi-Chi earthquake in central Taiwan [J]. Island Arc,2003,12(4):325 − 334. doi:  10.1046/j.1440-1738.2003.00400.x
    [16] WANG H B,SASSA K,XU W Y. Analysis of a spatial distribution of landslides triggered by the 2004 Chuetsu earthquakes of Niigata Prefecture,Japan[J]. Natural Hazards,2007,41(1):43 − 60. doi:  10.1007/s11069-006-9009-x
    [17] 汤明高,许强,张伟,等. 汶川地震触发窝前滑坡特征及失稳机制探讨[J]. 岩石力学与工程学报,2011,30(增刊2):3491 − 3502. [TANG Minggao,XU Qiang,ZHANG Wei,et al. Discuss on failure mechanism and geologic characteristic of Woqian landslide triggered by Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(Sup 2):3491 − 3502. (in Chinese with English abstract)

    TANG Minggao, XU Qiang, ZHANG Wei, et al. Discuss on failure mechanism and geologic characteristic of Woqian landslide triggered by Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Sup 2): 3491 − 3502. (in Chinese with English abstract)
    [18] YIN Yueping,LI Bin,WANG Wenpei. Dynamic analysis of the stabilized Wangjiayan landslide in the Wenchuan Ms 8.0 earthquake and aftershocks[J]. Landslides,2015,12(3):537 − 547. doi:  10.1007/s10346-014-0497-6
    [19] 郭沉稳,姚令侃,段书苏,等. 汶川、芦山、尼泊尔地震触发崩塌滑坡分布规律[J]. 西南交通大学学报,2016,51(1):71 − 77. [GUO Chenwen,YAO Lingkan,DUAN Shusu,et al. Distribution regularities of landslides induced by Wenchuan earthquake,Lushan earthquake and Nepal earthquake[J]. Journal of Southwest Jiaotong University,2016,51(1):71 − 77. (in Chinese with English abstract) doi:  10.3969/j.issn.0258-2724.2016.01.011

    GUO Chenwen, YAO Lingkan, DUAN Shusu, et al. Distribution regularities of landslides induced by Wenchuan earthquake, Lushan earthquake and Nepal earthquake[J]. Journal of Southwest Jiaotong University, 2016, 511): 7177. (in Chinese with English abstract) doi:  10.3969/j.issn.0258-2724.2016.01.011
    [20] 张冬丽,周正华,陶夏新. 震源破裂方式和断层性质对近场强地震动特征的影响[J]. 西北地震学报,2009,31(4):311 − 318. [ZHANG Dongli,ZHOU Zhenghua,TAO Xiaxin. Influence of seismic source mechanism and fault property on near-field strong ground motion[J]. Northwestern Seismological Journal,2009,31(4):311 − 318. (in Chinese with English abstract)

    ZHANG Dongli, ZHOU Zhenghua, TAO Xiaxin. Influence of seismic source mechanism and fault property on near-field strong ground motion[J]. Northwestern Seismological Journal, 2009, 314): 311318. (in Chinese with English abstract)
    [21] 许强,李为乐. 汶川地震诱发大型滑坡分布规律研究[J]. 工程地质学报,2010,18(6):818 − 826. [XU Qiang,LI Weile. Distribution of large-scale landslides induced by the Wenchuan earthquake[J]. Journal of Engineering Geology,2010,18(6):818 − 826. (in Chinese with English abstract) doi:  10.3969/j.issn.1004-9665.2010.06.002

    XU Qiang, LI Weile. Distribution of large-scale landslides induced by the Wenchuan earthquake[J]. Journal of Engineering Geology, 2010, 186): 818826. (in Chinese with English abstract) doi:  10.3969/j.issn.1004-9665.2010.06.002
    [22] 杨琴,范宣梅,许强,等. 北川唐家湾滑坡变形历史与形成机制研究[J]. 水文地质工程地质,2018,45(2):136 − 141. [YANG Qin,FAN Xuanmei,XU Qiang,et al. A study of the deformation history and mechanism of the Tangjiawan landslide[J]. Hydrogeology & Engineering Geology,2018,45(2):136 − 141. (in Chinese with English abstract)

    YANG Qin, FAN Xuanmei, XU Qiang, et al. A study of the deformation history and mechanism of the Tangjiawan landslide[J]. Hydrogeology & Engineering Geology, 2018, 452): 136141. (in Chinese with English abstract)
    [23] 毕钰璋,付跃升,何思明,等. 牛眠沟地震滑坡碎屑化全过程离散元模拟[J]. 中国地质灾害与防治学报,2015,26(3):17 − 25. [BI Yuzhang,FU Yuesheng,HE Siming,et al. Simulation of the whole process of Niumiangou creek rock avalanche triggered by the earthquake using a distinct element method[J]. The Chinese Journal of Geological Hazard and Control,2015,26(3):17 − 25. (in Chinese with English abstract) doi:  10.16031/j.cnki.issn.1003-8035.2015.03.04

    BI Yuzhang, FU Yuesheng, HE Siming, et al. Simulation of the whole process of Niumiangou creek rock avalanche triggered by the earthquake using a distinct element method[J]. The Chinese Journal of Geological Hazard and Control, 2015, 263): 1725. (in Chinese with English abstract) doi:  10.16031/j.cnki.issn.1003-8035.2015.03.04
    [24] 苏生瑞,张永双,李松,等. 汶川地震引发高速远程滑坡运动机理数值模拟研究——以谢家店子滑坡为例[J]. 地球科学与环境学报,2010,32(3):277 − 287. [SU Shengrui,ZHANG Yongshuang,LI Song,et al. Numerical analysis on motion mechanism of highspeed and long runout landslide by Wenchuan earthquake:Taking xiejiadianzi landslide as an example[J]. Journal of Earth Sciences and Environment,2010,32(3):277 − 287. (in Chinese with English abstract) doi:  10.3969/j.issn.1672-6561.2010.03.011

    SU Shengrui, ZHANG Yongshuang, LI Song, et al. Numerical analysis on motion mechanism of highspeed and long runout landslide by Wenchuan earthquake: Taking xiejiadianzi landslide as an example[J]. Journal of Earth Sciences and Environment, 2010, 323): 277287. (in Chinese with English abstract) doi:  10.3969/j.issn.1672-6561.2010.03.011
    [25] 孙萍,张永双,殷跃平,等. 东河口滑坡-碎屑流高速远程运移机制探讨[J]. 工程地质学报,2009,17(6):737 − 744. [SUN Ping,ZHANG Yongshuang,YIN Yueping,et al. Discussion on long Run-out sliding mechanism of donghekou landslide-debris flow[J]. Journal of Engineering Geology,2009,17(6):737 − 744. (in Chinese with English abstract) doi:  10.3969/j.issn.1004-9665.2009.06.002

    SUN Ping, ZHANG Yongshuang, YIN Yueping, et al. Discussion on long Run-out sliding mechanism of donghekou landslide-debris flow[J]. Journal of Engineering Geology, 2009, 176): 737744. (in Chinese with English abstract) doi:  10.3969/j.issn.1004-9665.2009.06.002
    [26] 贺小黑,谭建民,裴来政. 断层对地质灾害的影响——以安化地区为例[J]. 中国地质灾害与防治学报,2017,28(3):150 − 155. [HE Xiaohei,TAN Jianmin,PEI Laizheng. Influence of faults on geohazards:Take Anhua County as an example[J]. The Chinese Journal of Geological Hazard and Control,2017,28(3):150 − 155. (in Chinese with English abstract) doi:  10.16031/j.cnki.issn.1003-8035.2017.03.23

    HE Xiaohei, TAN Jianmin, PEI Laizheng. Influence of faults on geohazards: Take Anhua County as an example[J]. The Chinese Journal of Geological Hazard and Control, 2017, 283): 150155. (in Chinese with English abstract) doi:  10.16031/j.cnki.issn.1003-8035.2017.03.23
    [27] 汤明高,许强,黄润秋,等. 小湾水电工程6#山梁节理岩体高边坡3DEC分析[J]. 水文地质工程地质,2006,33(3):57 − 60. [TANG Minggao,XU Qiang,HUANG Runqiu,et al. 3DEC analysis on 6# high rock slope with joints in Xiaowan Hydropower Project[J]. Hydrogeology & Engineering Geology,2006,33(3):57 − 60. (in Chinese with English abstract) doi:  10.3969/j.issn.1000-3665.2006.03.014

    TANG Minggao, XU Qiang, HUANG Runqiu, et al. 3DEC analysis on 6# high rock slope with joints in Xiaowan Hydropower Project[J]. Hydrogeology & Engineering Geology, 2006, 333): 5760. (in Chinese with English abstract) doi:  10.3969/j.issn.1000-3665.2006.03.014
    [28] Itasca Consulting Group Inc. 3DEC—Three-Dimensional Distinct Element Code (Version 5.2) [R]. 2016.
    [29] BOWA V M,XIA Yuanyou,YAN Minjia,et al. Toppling of the jointed rock slope with counter-tilted weak planes influenced by the response to local earthquakes[J]. International Journal of Mining and Mineral Engineering,2018,9(4):302. doi:  10.1504/IJMME.2018.097427
    [30] MREYEN A S,DONATI D,ELMO D,et al. Dynamic numerical modelling of co-seismic landslides using the 3D distinct element method:insights from the Balta rockslide (Romania)[J]. Engineering Geology,2022,307:106774. doi:  10.1016/j.enggeo.2022.106774
    [31] 魏进兵, 何治良, 杨仲康. 考虑地震危险性的倾倒变形边坡风险定量分析[J]. 地质科技通报,2022,41(2):71 − 78. [WEI Jinbing, HE Zhiliang, YANG Zhongkang. Quantitative risk analysis of toppling slope considering seismic risk[J]. Bulletin of Geological Science and Technology,2022,41(2):71 − 78.(in Chinese with English abstract)

    WEI Jinbing, HE Zhiliang, YANG Zhongkang. Quantitative risk analysis of toppling slope considering seismic risk[J]. Bulletin of Geological Science and Technology, 2022, 412): 7178.(in Chinese with English abstract)
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  30
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-15
  • 录用日期:  2022-12-16
  • 修回日期:  2022-12-15
  • 网络出版日期:  2023-10-23
  • 刊出日期:  2023-11-15

目录

    /

    返回文章
    返回