ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于竖管法的轻非水相液体毛细上升特性研究

李志萍 刘宇 赵贵章 周汇 刘少康 刘文辉

李志萍,刘宇,赵贵章,等. 基于竖管法的轻非水相液体毛细上升特性研究[J]. 水文地质工程地质,2023,50(0): 1-10 doi:  10.16030/j.cnki.issn.1000-3665.202209020
引用本文: 李志萍,刘宇,赵贵章,等. 基于竖管法的轻非水相液体毛细上升特性研究[J]. 水文地质工程地质,2023,50(0): 1-10 doi:  10.16030/j.cnki.issn.1000-3665.202209020
LI Zhiping, LIU Yu, ZHAO Guizhang, et al. A study of the capillary rise characteristics of LNAPL based on the vertical pipes method[J]. Hydrogeology & Engineering Geology, 2023, 50(0): 1-10 doi:  10.16030/j.cnki.issn.1000-3665.202209020
Citation: LI Zhiping, LIU Yu, ZHAO Guizhang, et al. A study of the capillary rise characteristics of LNAPL based on the vertical pipes method[J]. Hydrogeology & Engineering Geology, 2023, 50(0): 1-10 doi:  10.16030/j.cnki.issn.1000-3665.202209020

基于竖管法的轻非水相液体毛细上升特性研究

doi: 10.16030/j.cnki.issn.1000-3665.202209020
基金项目: 国家自然科学基金项目(41372260;41972261)
详细信息
    作者简介:

    李志萍(1971—),女,博士,教授,主要从事地下水污染控制与环境影响评价等方面工作。E-mail:lizhiping@ncwu.edu.cn

    通讯作者:

    赵贵章(1975—),男,博士,副教授,主要从事水文地质与环境地质等方面工作。E-mail:guizhangzhao@163.com

  • 中图分类号: P641.2

A study of the capillary rise characteristics of LNAPL based on the vertical pipes method

  • 摘要: 被称为“工业血液”的轻非水相液体(LNAPL)及其衍生物在开采、生产、运输过程中所产生的污染已经成为常见的污染物,目前诸多学者对LNAPL污染进行了广泛研究,但对于LNAPL在土壤中迁移及毛细作用研究尚不充分。本次试验的目的是通过室内模拟试验分析不同竖管直径条件下LNAPL在不同介质中的毛细上升规律,为研究LNAPL对地下水污染提供一定的理论依据。结果表明:影响毛细上升高度因素大小依次为:溶液>介质>竖管直径;竖管直径与最大毛细上升高度并不是完全成比例关系,并且对毛细上升高度的影响相对较小;水与柴油在不同介质中毛细上升高度、毛细上升速率变化趋势基本一致,但是具体数值上存在差异,柴油的最大毛细上升高度与水相比降低了40%~50%,柴油的最大毛细上升速率与水相比降低30%~50%。这些特征都能够较好地体现LNAPL在不同介质中的毛细上升规律,在认识LNAPL对地下水的污染以及污染土地修复方面具有重要意义。
  • 图  1  试验装置示意图

    Figure  1.  Schematic diagram of the test device

    图  2  介质不同时毛细上升高度随竖管直径的变化

    Figure  2.  Changes of capillary rise height with the diameter of the vertical pipe when the medium is different

    图  3  竖管直径不同时毛细上升高度变化规律

    Figure  3.  Variations of capillary rise height with different diameters of the vertical tube

    图  4  竖管直径不同时毛细上升速率变化规律

    Figure  4.  Variations of capillary rise rate with different diameters of the vertical tube

    表  1  试验砂样颗粒级配

    Table  1.   Particle gradation of the experimental sand samples

    试样不均匀系数曲率系数平均粒径/mm粒径所占百分比/%
    0.500~<2.0mm0.25~<0.5mm0.075~<0.25mm0.005~<0.075mm<0.005mm
    细砂1.890.870.13194.432.6
    粉砂30.674.780.20517.526.238.112.95.3
    粗砂5.371.160.61058.324.715.31.20.5
    下载: 导出CSV

    表  2  毛细上升试验方案

    Table  2.   Capillary rise test schemes

    试验编号介质竖管直径/cm溶液试验编号介质竖管直径/cm溶液
    1#细砂1.610#粉砂3.0柴油
    2#细砂1.6柴油11#粉砂5.0
    3#细砂3.012#粉砂5.0柴油
    4#细砂3.0柴油13#粗砂1.6
    5#细砂5.014#粗砂1.6柴油
    6#细砂5.0柴油15#粗砂3.0
    7#粉砂1.616#粗砂3.0柴油
    8#粉砂1.6柴油17#粗砂5.0
    9#粉砂3.018#粗砂5.0柴油
    下载: 导出CSV

    表  3  极差分析结果

    Table  3.   Range analysis results

    因素KavgR折算系数dR
    竖管直径36.9239.1538.182.230.522.84
    介质48.4838.3827.3821.100.5226.88
    溶液48.2627.9120.350.7143.55
    下载: 导出CSV

    表  4  毛细上升高度与时间关系拟合参数

    Table  4.   Fitting parameters of the relationship between capillary rise height and time

    竖管直径/cm系数柴油
    细砂粉砂粗砂细砂粉砂粗砂
    1.6a28.85523.64919.23913.08513.06710.571
    b6.6725.9192.8634.5703.7261.939
    $ {R}^{2} $0.9960.9900.9850.9960.9950.977
    3a31.44626.44020.33915.14311.40810.181
    b7.1555.9382.8884.3743.4802.438
    $ {R}^{2} $0.9940.9910.9180.9900.9940.997
    5a29.67325.22021.05813.31512.53610.295
    b6.4666.3003.0453.4543.6922.287
    $ {R}^{2} $0.9900.9920.9690.9960.9890.998
    下载: 导出CSV
  • [1] 沈欢,黄勇,苏悦,等. 裂隙介质中LNAPL污染物迁移研究进展[J]. 环境科技,2021,34(2):68 − 72. [SHEN Huan,HUANG Yong,SU Yue,et al. Research progress on the migration of lnapl pollutants in fractured media[J]. Environmental Science and Technology,2021,34(2):68 − 72. (in Chinese with English abstract)
    [2] XIA T,DONG Y H,MAO D Q,et al. Delineation of LNAPL contaminant plumes at a former perfumery plant using electrical resistivity tomography[J]. Hydrogeology Journal,2021,29(3):1189 − 1201. doi:  10.1007/s10040-021-02311-5
    [3] PAN Y Y,ZHANG Q,YU Y W,et al. Three-dimensional migration and resistivity characteristics of crude oil in heterogeneous soil layers[J]. Environmental Pollution,2021,268:115309. doi:  10.1016/j.envpol.2020.115309
    [4] 段纪淼,王岩,刘慧姝,等. 油品在土壤中的运移特性[J]. 油气储运,2019,38(7):798 − 803. [DUAN Jimiao,WANG Yan,LIU Huishu,et al. Migration characteristics of oils in soil[J]. Oil & Gas Storage and Transportation,2019,38(7):798 − 803. (in Chinese with English abstract)
    [5] ALAZAIZA MOTASEM Y D,TAHRA A M,AHMED A,et al. Diesel migration and distribution in capillary fringe using different spill volumes via image analysis[J]. Fluids,2021,6(5):189. doi:  10.3390/fluids6050189
    [6] 童玲,陈伟胜,郑西来,等. 柴油污染土壤中毛细水上升规律研究[J]. 灌溉排水学报,2011,30(6):131 − 134. [TONG Ling,CHEN Weisheng,ZHENG Xilai,et al. Capillary rise of water in diesel oil contaminated soils[J]. Journal of Irrigation and Drainage,2011,30(6):131 − 134. (in Chinese with English abstract)
    [7] 潘明浩,时健,左锐,等. 水位波动下包气带透镜体影响LNAPL迁移的数值模拟研究[J]. 水文地质工程地质,2022,49(1):154 − 163. [PAN Minghao,SHI Jian,ZUO Rui,et al. A numerical simulation study of the effect of the vadose zone with lenses on LNAPL migration under the fluctuating water table[J]. Hydrogeology & Engineering Geology,2022,49(1):154 − 163. (in Chinese with English abstract)
    [8] 赵科锋,王锦国,曹慧群. 含单裂隙非饱和带中轻非水相流体修复的数值模拟[J]. 水文地质工程地质,2020,47(5):43 − 55. [ZHAO Kefeng,WANG Jinguo,CAO Huiqun. Numerical simulation oflight non-aqueous phase liquids remediation in the unsaturated zone with single fractures[J]. Hydrogeology & Engineering Geology,2020,47(5):43 − 55. (in Chinese with English abstract)
    [9] 杜川, 李厚恩. 有机污染场地LNAPL分布特征与形成机理分析[C]//中国环境科学学会2021年科学技术年会——环境工程技术创新与应用分会场论文集(三). 2021: 602 − 606

    Du Chuan, LI Houen. Distribution characteristics and formation mechanism of LNAPL in origanic contaminated sites[C]//Proceedings of the 2021 Annual Conference of Science and Technology of the Chinese Society of Environmental Sciences: Technological Innovation and Application of Environmental Engineering (III). 2021: 602 − 606. (in Chinese with English abstract)
    [10] 胡明鉴,张晨阳,崔翔,等. 钙质砂中毛细水高度与影响因素试验研究[J]. 岩土力学,2019,40(11):4157 − 4164. [HU Mingjian,ZHANG Chenyang,CUI Xiang,et al. Experimental study on capillary rise and influencing factors in calcareous sand[J]. Rock and Soil Mechanics,2019,40(11):4157 − 4164. (in Chinese with English abstract)
    [11] LIU Qiang,YASUFUKU NORIYUKI,MIAO Jiali,et al. An approach for quick estimation of maximum height of capillary rise[J]. Soils and Foundations,2014,54(6):1241 − 1245. doi:  10.1016/j.sandf.2014.11.017
    [12] MOL L,VILES H. Exposing drying patterns:using electrical resistivity tomography to monitor capillary rise in sandstone under varying drying conditions[J]. Environmental Earth Sciences,2013,68(6):1647 − 1659. doi:  10.1007/s12665-012-1858-x
    [13] 崔浩浩,张光辉,刘鹏飞,等. 包气带岩性结构对地下水生态功能影响特征[J]. 水文地质工程地质,2022,49(5):52 − 62. [CUI Haohao,ZHANG Guanghui,LIU Pengfei,et al. Characteristics of influence of lithologic structure of vadose zone on groundwater ecological function[J]. Hydrogeology & Engineering Geology,2022,49(5):52 − 62. (in Chinese)
    [14] 董斌,张喜发,李欣,等. 毛细水上升高度综合试验研究[J]. 岩土工程学报,2008,30(10):1569 − 1574. [DONG Bin,ZHANG Xifa,LI Xin,et al. Comprehensive tests on rising height of capillary water[J]. Chinese Journal of Geotechnical Engineering,2008,30(10):1569 − 1574. (in Chinese with English abstract)
    [15] 何建新,糟凯龙,杨海华. 塔里木河胡杨实现自我恢复的新方法探索[J]. 水电能源科学,2021,39(7):33 − 37. [HE Jianxin,ZAO Kailong,YANG Haihua. Exploration of new methods to realize self-recovery of populus euphonium from Tarim River[J]. Water Resources and Power,2021,39(7):33 − 37. (in Chinese with English abstract)
    [16] 洒永芳. 含水层中污染物向土壤垂向迁移的水力调控措施及其影响研究[D]. 成都: 西南交通大学

    SA Yongfang. Study on hydraulic control measures and its influence of vertical migration of pollutants from aquifer to soil[D]. Chengdu: Southwest Jiaotong University. (in Chinese with English abstract)
    [17] 刘伟佳,吴军虎,裴青宝,等. 不同地下水埋深条件下均质土壤毛管上升水运动特性试验研究[J]. 水资源与水工程学报,2010,21(1):67 − 70. [LIU Weijia,WU Junhu,PEI Qingbao,et al. Experimental research on capillary water upward movement in homogeneous soil under different ground water tables[J]. Journal of Water Resources and Water Engineering,2010,21(1):67 − 70. (in Chinese with English abstract)
    [18] Baldovino, Jair Arrieta et al. The Capillary Rise in Fine and Coarse-Grained Soils Considering the Matric Suction. [J] Jouinal of Xi’an Unniversity of Architecture & Technology 2021, 29(4): 1608-1615.
    [19] 姚华,张喜发,张冬青. 影响粗粒土毛细水上升高度的因素研究[J]. 勘察科学技术,2007(1):10 − 12. [YAO Hua,ZHANG Xifa,ZHANG Dongqing. Research on affecting factors of rising height of capillary water on coarse grained soil[J]. Site Investigation Science and Technology,2007(1):10 − 12. (in Chinese with English abstract)
    [20] 王兴照,李英杰,胡晶,等. 表面活性剂对土壤毛细水上升特性的影响[J]. 安徽农业科学,2018,46(18):98 − 101. [WANG Xingzhao,LI Yingjie,HU Jing,et al. Effects of surfactants on the characteristic of soil capillary water rising[J]. Journal of Anhui Agricultural Sciences,2018,46(18):98 − 101. (in Chinese with English abstract)
    [21] 邓改革,何建国,康宁波. 基于多物理场耦合的毛细水高度研究[J]. 水土保持研究,2021,28(4):136 − 141. [DENG Gaige,HE Jianguo,KANG Ningbo. Research on capillary water height based on multi-physical field coupling[J]. Research of Soil and Water Conservation,2021,28(4):136 − 141. (in Chinese with English abstract) doi:  10.13869/j.cnki.rswc.2021.04.018
    [22] 魏样,王益权,蔡苗,等. 石油污染对土壤毛细水上升特性的影响[J]. 灌溉排水学报,2017,36(9):50 − 56. [WEI Fan,WANG Yiquan,CAI Miao,et al. Effects of petroleum pollution on the rising characteristics of soil capillary water[J]. Journal of Irrigation and Drainage,2017,36(9):50 − 56. (in Chinese with English abstract)
    [23] 王聪,张平,谢长青,等. 不同浓度盐溶液及盐渍土对毛细水上升影响的研究[J]. 节水灌溉,2014(12):26 − 28. [WANG Cong,ZHANG Ping,XIE Changqing,et al. Effect of different concentration salt solution and saline soil on capillary water upward movement[J]. Water Saving Irrigation,2014(12):26 − 28. (in Chinese with English abstract)
    [24] 张平,吴昊,殷洪建,等. 颗粒级配对毛细水上升影响的研究[J]. 节水灌溉,2010(7):24 − 26. [ZHANG Ping,WU Hao,YIN Hongjian,et al. Effect of particle size distribution on capillary water upward movement[J]. Water Saving Irrigation,2010(7):24 − 26. (in Chinese with English abstract)
    [25] 沈宇鹏,曹权,陈芷航,等. 含盐石英砂的毛细上升特性及其影响因素研究[J]. 铁道工程学报,2022,39(3):13 − 18. [SHEN Yupeng,CAO Quan,CHEN Zhihang,et al. Research on the capillary rising characteristics and influencing factors of salt-containing quartz sand[J]. Journal of Railway Engineering Society,2022,39(3):13 − 18. (in Chinese with English abstract) doi:  10.3969/j.issn.1006-2106.2022.03.003
    [26] 董荣泽,于明英,邱照宁,等. 沙土上升毛管水运动特性研究[J]. 节水灌溉,2018(4):19 − 25. [DONG Rongze,YU Mingying,QIU Zhaoning,et al. A study on capillary water movement characteristics in sandy soil[J]. Water Saving Irrigation,2018(4):19 − 25. (in Chinese with English abstract)
    [27] 何艳平. 低液限粉土毛细上升特征的影响因素研究[J]. 工程勘察,2020,48(4):11 − 18. [HE Yanping. Study on influencing factors of capillary rise characteristics of low liquid limit silt[J]. Geotechnical Investigation & Surveying,2020,48(4):11 − 18. (in Chinese with English abstract)
    [28] 苗强强, 陈正汉, 田卿燕, 等. 非饱和含黏土砂毛细上升试验研究[J]. 岩土力学, 2011, 32(增刊1): 327-333

    MIAO Qiangqiang, CHEN Zhenghan, TIAN Qingyan, et al. Experimental study of capillary rise of unsaturated clayey sand[J]. Rock and Soil Mechanics, 2011, 32(Sup 1): 327-333. (in Chinese with English abstract)
    [29] LIU Di,LU Caiwu,LIAN Minjie,et al. Experimental study on capillary water migration characteristics of tailings with different particle sizes[J]. Geofluids,2022,2022:1 − 12.
    [30] 中华人民共和国水利部. 土工试验规程: SL237-1999[S]. 北京: 中国水利水电出版社, 1999.
    [31] 黄志全. 土力学[M]. 郑州: 黄河水利出版社, 2011: 221 − 223

    HUANG Zhiquan. Soil Mechanics[M]. Zhengzhou: Yellow River Water Conservancy Press, 2011: 221 − 223. (in Chinese with English abstract)
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  92
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-14
  • 修回日期:  2022-12-25

目录

    /

    返回文章
    返回