ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD 收录期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于BP神经网络反演分析的隧道塌方机理研究

陈航 张贝贝 旷华江 肖丽娜

陈航,张贝贝,旷华江,等. 基于BP神经网络反演分析的隧道塌方机理研究[J]. 水文地质工程地质,2022,50(0): 1-10 doi:  10.16030/j.cnki.issn.1000-3665.202208066
引用本文: 陈航,张贝贝,旷华江,等. 基于BP神经网络反演分析的隧道塌方机理研究[J]. 水文地质工程地质,2022,50(0): 1-10 doi:  10.16030/j.cnki.issn.1000-3665.202208066
CHEN Hang, ZHANG Beibei, KUANG Huajiang, et al. A study of the tunnel collapse mechanism based on the BP neural network inversion analysis[J]. Hydrogeology & Engineering Geology, 2022, 50(0): 1-10 doi:  10.16030/j.cnki.issn.1000-3665.202208066
Citation: CHEN Hang, ZHANG Beibei, KUANG Huajiang, et al. A study of the tunnel collapse mechanism based on the BP neural network inversion analysis[J]. Hydrogeology & Engineering Geology, 2022, 50(0): 1-10 doi:  10.16030/j.cnki.issn.1000-3665.202208066

基于BP神经网络反演分析的隧道塌方机理研究

doi: 10.16030/j.cnki.issn.1000-3665.202208066
基金项目: 国家自然科学基金资助项目( 51608141);贵州省教育厅青年科技人才成长项目黔教合KY字[2022]008号;受贵阳市科技局贵阳学院专项资金[GYU-KY-[2021]]资助;4.贵州省教育厅青年科技人才成长项目黔教合KY字[2020]079号
详细信息
    作者简介:

    陈航(1990-),男,硕士,主要从事岩土工程方向、地下工程等领域的教学与科研工作。E-mail:330596225@qq.com

    通讯作者:

    张贝贝(1986-),男,博士,副教授,主要从事岩土、隧道等相关领域的工作,E-mail:369226241@qq.com

  • 中图分类号: U455

A study of the tunnel collapse mechanism based on the BP neural network inversion analysis

  • 摘要: 岩溶区隧道在施工过程中易发生崩塌,针对力学方面的隧道塌方机理分析较多,然而针对岩溶软弱破碎带等地层方面的隧道塌方机理研究分析较少,使隧道工程进展的难度和风险更大。为保证隧道施工的安全性、经济性和可行性,因此掌握该隧道施工中的塌方机理非常有必要。依托贵州某岩溶破碎地层隧道,在开挖过程中发生的坍塌现象,结合隧道的监测数据,运用BP神经网络的构建原理,对隧道的地层参数进行反演。将反演土体力学参数输入到Flac3D有限元软件构建的不同施工方法模型中,对典型断面的崩塌破坏机制和风险进行了判断和分析。结果表明:BP神经网络获得的地层反演参数具有一定的可信度,能够准确再现隧道崩塌实际破坏情况;施工方法对隧道开挖的稳定性影响较大,针对围岩等级为Ⅴ级的隧道,采用三台阶七步法和单侧壁导坑法施工较安全,隧道塌方与隧道双向同时开挖没有关系;反演所得的隧道拱顶位移预测值为2.3 cm,地表位移预测值为1.2 cm,与监测数据偏差13%左右,误差较小。研究结果,对岩溶区软弱破碎地层断面隧道公路建设具有重要指导意义。
  • 图  1  ZK98+738坍塌现场

    Figure  1.  ZK98+738 collapse site

    图  2  模型计算网格

    Figure  2.  Computation grids of the Model

    图  3  隧道边界条件示意图

    Figure  3.  Boundary conditions of the tunnel

    图  4  监测点位置

    Figure  4.  Location of the monitoring points

    图  5  大断面隧道施工模型

    Figure  5.  Large section tunnel construction model

    图  6  两台阶施工法

    Figure  6.  Two-step construction method

    图  7  两台阶施工法和位移监测点

    Figure  7.  Two-step construction method and displacement monitoring points

    图  8  隧道断面位移图

    Figure  8.  Displacement diagram of the tunnel section

    图  9  隧道断面塑性区图

    Figure  9.  Plastic zone of the tunnel section

    图  10  不同施工法和位移监测点

    Figure  10.  Different construction methods and displacement monitoring points

    图  11  模拟不同施工法沉降位移图

    Figure  11.  Settlement displacement diagram of different construction methods

    图  12  两台阶单双线开挖沉降位移图

    Figure  12.  Settlement displacement map of two-step single and double line excavation

    表  1  隧道左右线围岩级别及长度占比

    Table  1.   Surrounding rock grade and length ratio of the left and right lines of the tunnel

    隧 道围岩级别长度/m占比/%

    左、右线
    39561.7
    19029.7
    558.6
    下载: 导出CSV

    表  2  正交试验计算表

    Table  2.   Orthogonal test tables

    编号粉质黏土围岩位移
    E/MPac/kPaΦ/(°)E/GPac/kPaΦ/(°)拱顶位移/mm地表位移/mm
    158.52010510210.42
    216.2511.875201532.518.7440.88
    327.515.2520206027.5621.24
    438.7518.62202587.536.278.51.57
    55022203011545961.92
    638.752226.251032.527.554.51.09
    7508.526.25156036.260.51.21
    8511.87526.252087.54532.50.65
    916.2515.2526.25251151057.51.15
    1027.518.6226.2530518.7380.76
    1116.2518.6232.510604549.50.99
    1227.52232.51587.51064.51.29
    1338.758.532.52011518.7691.38
    145011.87532.525527.548.50.97
    15515.2532.53032.536.238.50.77
    165015.2538.751087.518.7621.24
    17518.6238.751511527.5480.96
    1816.252238.7520536.2591.18
    1927.58.538.752532.54555.51.11
    2038.7511.87538.75306010691.38
    2127.511.875451011536.2561.12
    2238.7515.254515545641.28
    235018.62452032.510531.06
    2452245256018.753.51.07
    2516.258.5453087.527.5420.84
    下载: 导出CSV

    表  3  地层参数反演数值

    Table  3.   Inversion of formation parameters

    地层变形模量E/MPa粘聚力c/kPa内摩擦角Φ/(°)
    粉质黏土5.1713.5213.24
    围岩142.51428.1225.54
    下载: 导出CSV
  • [1] QIAN Q H. New development of rock engineering and technology in China[C]. Proceedings of 12th ISRM International Congress on Rock Mechanics, Harmonising Rock Engineering and the Environment. Beijing; Taylor and Francis Group, 2011: 57 − 61.
    [2] HUDSON J A. The next 50 years of the ISRM and anticipated future progress in rock mechanics[C]. Proceedings of the 12th ISRM International Congress on Rock Mechanics, Harmonising Rock Engineering and the Environment. Beijing: Taylor and Francis Group, 2011: 47–51.
    [3] 李术才,刘斌,孙怀凤,等. 隧道施工超前地质预报研究现状及发展趋势[J]. 岩石力学与工程学报,2014,33(6):1090 − 1113. [LI Shucai,LIU Bin,SUN Huaifeng,et al. State of art and trends of advanced geological prediction in tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(6):1090 − 1113. (in Chinese with English abstract)
    [4] XIA K Z,CHEN C X,ZHENG Y,et al. Engineering geology and ground collapse mechanism in the Chengchao Iron-ore Mine in China[J]. Engineering Geology,2019,249:129 − 147. doi:  10.1016/j.enggeo.2018.12.028
    [5] HAN L,ZUO Y Y,GUO Z,et al. Mechanical properties and deformation and failure characteristics of surrounding rocks of tunnels excavated in soft rocks[J]. Geotechnical and Geological Engineering,2017,35(6):2789 − 2801. doi:  10.1007/s10706-017-0278-9
    [6] WANG Q,PAN R,JIANG B,et al. Study on failure mechanism of roadway with soft rock in deep coal mine and confined concrete support system[J]. Engineering Failure Analysis,2017,81:155 − 177. doi:  10.1016/j.engfailanal.2017.08.003
    [7] HUANG X,LIU Q S,LIU B,et al. Experimental study on the dilatancy and fracturing behavior of soft rock under unloading conditions[J]. International Journal of Civil Engineering,2017,15(6):921 − 948. doi:  10.1007/s40999-016-0144-9
    [8] ZHANG Z Q,SHI X Q,WANG B,et al. Stability of NATM tunnel faces in soft surrounding rocks[J]. Computers and Geotechnics,2018,96:90 − 102. doi:  10.1016/j.compgeo.2017.10.009
    [9] 戴永浩, 陈卫忠, 田洪铭, 等. 大梁隧道软岩大变形及其支护方案研究[J]. 岩石力学与工程学报, 2015, 34(增刊2): 4149 − 4156

    DAI Yonghao, CHEN Weizhong, TIAN Hongming, et al. Study of large deformation and support measures of Daliang Tunnel with soft surrounding rockmass[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Sup 2): 4149 − 4156. (in Chinese with English abstract)
    [10] XIA K Z,CHEN C X,WANG T L,et al. Estimating the geological strength index and disturbance factor in the Hoek-Brown criterion using the acoustic wave velocity in the rock mass[J]. Engineering Geology,2022,306:106745. doi:  10.1016/j.enggeo.2022.106745
    [11] 赵俊杰, 贾斌, 张东, 等. 基于 BP 神经网络的阿拉套山隧道围岩物理力学参数反演分析[J]. 隧道建设(中英文), 2019, 39(增刊1): 220 − 226

    ZHAO Junjie, JIA Bin, ZHANG Dong, et al. Inverse analysis of physical and mechanical parameters of Alataoshan tunnel surrounding rock based on BP neural network[J]. Tunnel Construction, 2019, 39(Sup 1): 220 − 226.
    [12] 文辉辉,尹健民,秦志光,等. BP神经网络在隧道围岩力学参数反演中的应用[J]. 长江科学院院报,2013,30(2):47 − 51. [WEN Huihui,YIN Jianmin,QIN Zhiguang,et al. Application of BP neural network to the back analysis of mechanical parameters of tunnel surrounding rock[J]. Journal of Yangtze River Scientific Research Institute,2013,30(2):47 − 51. (in Chinese with English abstract) doi:  10.3969/j.issn.1001-5485.2013.02.010
    [13] 刘超,袁伟,路军富,等. 某铁路隧道底鼓段粉砂质泥岩微宏观物理力学特性研究[J]. 水文地质工程地质,2020,47(5):108 − 115. [LIU Chao,YUAN Wei,LU Junfu,et al. A study of the micro-macro-physical and mechanical properties of silty mudstone in the bottom drum section of a railway tunnel[J]. Hydrogeology & Engineering Geology,2020,47(5):108 − 115. (in Chinese with English abstract)
    [14] 徐明祥,黄强兵,王庆兵,等. 西安地裂缝地段浅埋暗挖地铁隧道施工沉降规律[J]. 水文地质工程地质,2020,47(1):161 − 170. [XU Mingxiang,HUANG Qiangbing,WANG Qingbing,et al. Settlement rules of shallow-buried metro tunnel construction in the Xi'an ground fissure section[J]. Hydrogeology & Engineering Geology,2020,47(1):161 − 170. (in Chinese with English abstract)
    [15] 刘科伟. 公路隧道建造期塌方风险分析及控制的系统研究[D]. 长沙: 湖南大学, 2012

    LIU Kewei. The systemic landslide risk analysis and control in the construction of highway tunnels[D]. Changsha: Hunan University, 2012. (in Chinese with English abstract)
    [16] 谢雄耀,蔡杰龙,周应新,等. 浅埋软弱围岩隧道施工塌方及处治措施研究[J]. 建筑施工,2022,44(3):545 − 549. [XIE Xiongyao,CAI Jielong,ZHOU Yingxin,et al. Research on collapse and treatment measures for shallowly buried weak surrounding rock construction[J]. Building Construction,2022,44(3):545 − 549. (in Chinese with English abstract) doi:  10.14144/j.cnki.jzsg.2022.03.035
    [17] 丁涛. 浅埋隧道下穿高层建筑稳定性及相互影响研究[D]. 青岛: 青岛理工大学, 2013

    DING Tao. Study on the stability and interplay for shallow-buried tunnel under-traversing the high-rise buildings[D]. Qingdao: Qingdao Tehcnology University, 2013. (in Chinese with English abstract)
    [18] 陈洁金,周峰,阳军生,等. 山岭隧道塌方风险模糊层次分析[J]. 岩土力学,2009,30(8):2365 − 2370. [CHEN Jiejin,ZHOU Feng,YANG Junsheng,et al. Fuzzy analytic hierarchy process for risk evaluation of collapse during construction of mountain tunnel[J]. Rock and Soil Mechanics,2009,30(8):2365 − 2370. (in Chinese with English abstract) doi:  10.3969/j.issn.1000-7598.2009.08.030
    [19] 陈洁金, 高超, 晋婉晴, 等. 软弱地层大断面隧道三台阶七步法与临时仰拱法适应性分析的对比研究[J]. 工程力学, 2020, 37(增刊1): 180-186

    CHEN Jiejin, GAO Chao, JIN Wanqing, et al. Comparative study on adaptability analysis of three benching seven steps and temporary invert method for large-section tunnel in soft stratum[J]. Engineering Mechanics, 2020, 37(Sup 1): 180-186. (in Chinese with English abstract)
    [20] 许瑞宁,王志杰. 昔格达组地层大断面隧道施工工法比选分析[J]. 公路,2017,62(1):231 − 236. [XU Ruining,WANG Zhijie. Comparative analysis on construction methods of large section tunnels in xigeda formation strata[J]. Highway,2017,62(1):231 − 236. (in Chinese with English abstract)
    [21] 高峰,唐星,李星,等. 基于UDEC离散元法的隧道塌方特征分析[J]. 重庆交通大学学报(自然科学版),2018,37(1):24 − 28. [GAO Feng,TANG Xing,LI Xing,et al. Tunnel collapse characteristics based on UDEC discrete element method[J]. Journal of Chongqing Jiaotong University (Natural Science),2018,37(1):24 − 28. (in Chinese with English abstract) doi:  10.3969/j.issn.1674-0696.2018.01.04
    [22] 陈育民, 徐鼎平. FLAC/FLAC3D基础与工程实例[M]. 2版. 北京: 中国水利水电出版社, 2013

    CHEN Yumin, XU Dingping. FLAC/FLAC3D foundation and engineering example[M]. 2nd ed. Beijing: China Water & Power Press, 2013. (in Chinese)
    [23] 向欣. 边坡落石运动特性及碰撞冲击作用研究[D]. 武汉: 中国地质大学, 2010

    XIANG Xin. Research on motion characteristics and impact force of rockfall[D]. Wuhan: China University of Geosciences, 2010. (in Chinese with English abstract)
    [24] 杨友彬,郑俊杰,赖汉江,等. 一种改进的隧道开挖应力释放率确定方法[J]. 岩石力学与工程学报,2015,34(11):2251 − 2257. [YANG Youbin,ZHENG Junjie,LAI Hanjiang,et al. A revised method for calculating stress release ratio in tunnel excavation[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2251 − 2257. (in Chinese with English abstract)
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  132
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-19
  • 录用日期:  2022-10-24

目录

    /

    返回文章
    返回