ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

层状非均质性影响下河流对地下水的补给过程研究

吴佩鹏 束龙仓 李福林 陈华伟

吴佩鹏,束龙仓,李福林,等. 层状非均质性影响下河流对地下水的补给过程研究[J]. 水文地质工程地质,2023,50(3): 44-53 doi:  10.16030/j.cnki.issn.1000-3665.202208065
引用本文: 吴佩鹏,束龙仓,李福林,等. 层状非均质性影响下河流对地下水的补给过程研究[J]. 水文地质工程地质,2023,50(3): 44-53 doi:  10.16030/j.cnki.issn.1000-3665.202208065
WU Peipeng, SHU Longcang, LI Fulin, et al. Influence of stratified heterogeneity on the recharge from surface water to groundwater[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 44-53 doi:  10.16030/j.cnki.issn.1000-3665.202208065
Citation: WU Peipeng, SHU Longcang, LI Fulin, et al. Influence of stratified heterogeneity on the recharge from surface water to groundwater[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 44-53 doi:  10.16030/j.cnki.issn.1000-3665.202208065

层状非均质性影响下河流对地下水的补给过程研究

doi: 10.16030/j.cnki.issn.1000-3665.202208065
基金项目: “一带一路”水与可持续发展科技基金项目(2020nkms05);国家自然科学基金项目(42102286);国家重点研发计划项目(2021YFC3200504)
详细信息
    作者简介:

    吴佩鹏(1989-),男,博士,讲师,主要从事地下水系统理论研究。E-mail:hydrogeowu@jlu.edu.cn

    通讯作者:

    束龙仓(1964-),男,博士,教授,博导,主要从事地下水资源评价与管理研究。E-mail:lcshu@hhu.edu.cn

  • 中图分类号: P641.2

Influence of stratified heterogeneity on the recharge from surface water to groundwater

  • 摘要: 河流对地下水的补给过程研究是科学认识水循环规律及地下水资源可持续管理的基础。河床沉积层与其下伏潜水含水层岩性差异是河流下伏含水层的主要结构特征,也是控制河流对地下水补给过程的主要因素。为揭示含水介质分层结构特征影响下河流对地下水的补给过程,基于黄河干流河南段野外试验结果,建立了地表水地下水相互作用概念模型,并以地下水流路径为对象,精细刻画了地表水地下水的相互作用过程。结果表明:(1)河流对地下水的补给量主要受河床沉积层渗透性影响,河床沉积层厚度变化对河流向地下水的补给量影响不大。即:河床低渗透性沉积物的存在是河流向地下水补给量降低的主要原因,当河床沉积层与其下伏含水层厚度比(HS/H)由0增大为0.125时,河流向地下水补给量的减小幅度达72%。(2)与均质条件相比,河床沉积层渗透性及其厚度变化均明显改变了河水向地下水补给的水流路径及径流时间。随着河床沉积物与下伏含水层渗透系数比KU/KL的增大,河水向地下水补给的水流路径穿透深度增大,径流时间延长。(3)河流对地下水的补给量及地下水径流时间对低渗透性河床沉积层渗透系数的敏感性随渗透系数的减小而增大,同时,地下水径流时间对低渗透性河床沉积层的厚度变化较为敏感,且随着厚度的增大,敏感性增强。研究成果可为地下水资源管理及可持续开发提供参考依据。
  • 图  1  试验断面位置图

    Figure  1.  Location of the test sections

    图  2  竖管试验原理图

    Figure  2.  Schematic diagram of the standpipe test

    图  3  黄河下游地表水地下水相互作用数值模拟的概念模型

    Figure  3.  Conceptual model for numerical simulation of surface water-groundwater interaction in the lower Yellow River

    图  4  河床沉积物的渗透系数、厚度变化条件下地表水地下水转化量变化规律

    Figure  4.  Effect of the variation of the hydraulic conductivity of riverbed sediments and the variation of the thickness of riverbed sediments on the flux exchange between surface water and groundwater.

    图  5  河床沉积物渗透系数变化条件下地表水地下水转化路径及相应径流时间

    Figure  5.  Flow paths from surface water to groundwater and the corresponding travel times under the changing hydraulic conductivity of riverbed sediments

    图  6  河床沉积物厚度变化条件下地表水地下水转化路径及径流时间

    Figure  6.  Flow paths from surface water to groundwater and the corresponding travel times under the condition of changing sediment thickness

    图  7  河床沉积物的渗透系数、厚度变化条件下地表水地下水转化的径流时间变化规律

    Figure  7.  Effect of the variation of hydraulic conductivity of riverbed sediments, and the variation of sediment thickness on the travel times of groundwater recharged by surface water

    图  8  地表水地下水转化量及地下水径流时间对河床沉积物渗透系数变化的敏感性

    Figure  8.  Sensitivity of exchange flux between surface water and groundwater and groundwater travel times to the change of riverbed hydraulic conductivities

    图  9  地表水地下水转化量及地下水径流时间对河床沉积物厚度变化的敏感性

    Figure  9.  Sensitivity of exchange flux between surface water and groundwater and groundwater travel times to the change of thickness of riverbed sediments

    表  1  不同试验断面不同点位渗透系数竖管试验结果

    Table  1.   Standpipe test results of hydraulic conductivity at different points in different test sections /(m·d−1

    断面测点编号1测点编号2测点编号3测点编号4测点编号5测点编号6
    桃花峪4.5002.8003.4000.0146.0002.400
    4.8002.7003.8000.0105.8002.100
    4.0001.8003.0000.0124.9002.500
    3.4002.0004.0000.0096.4001.800
    平均值4.1752.3253.5500.0115.7752.200
    花园口2.4001.7802.5302.1801.7200.240
    2.1401.6902.3202.9800.9800.190
    1.9802.0102.5102.5701.5400.540
    2.0701.7501.8901.6901.2100.810
    平均值2.1481.8082.3132.3551.3630.445
    柳园口1.5700.0210.1400.0011.2100.850
    1.2800.0090.0090.0011.0800.940
    1.3700.0210.0140.0050.9700.090
    2.1500.0500.0210.0080.5200.120
    平均值1.5930.0250.0460.0040.9450.500
    下载: 导出CSV
  • [1] BOUCHEZ C,COOK P G,PARTINGTON D,et al. Comparison of surface water-groundwater exchange fluxes derived from hydraulic and geochemical methods and a regional groundwater model[J]. Water Resources Research,2021,57(3):e2020WR029137.
    [2] BOANO F,HARVEY J W,MARION A,et al. Hyporheic flow and transport processes:Mechanisms,models,and biogeochemical implications[J]. Reviews of Geophysics,2014,52(4):603 − 679. doi:  10.1002/2012RG000417
    [3] SAHA G C,LI Jianbing,THRING R W,et al. Temporal dynamics of groundwater-surface water interaction under the effects of climate change:A case study in the Kiskatinaw River Watershed,Canada[J]. Journal of Hydrology,2017,551:440 − 452. doi:  10.1016/j.jhydrol.2017.06.008
    [4] SEDGHI M M,ZHAN Hongbin. Groundwater dynamics due to general stream fluctuations in an unconfined single or dual-porosity aquifer subjected to general areal recharge[J]. Journal of Hydrology,2019,574:436 − 449. doi:  10.1016/j.jhydrol.2019.04.052
    [5] FERENCZ S B,CARDENAS M B,NEILSON B T. Analysis of the effects of dam release properties and ambient groundwater flow on surface water-groundwater exchange over a 100-km-long reach[J]. Water Resources Research,2019,55(11):8526 − 8546. doi:  10.1029/2019WR025210
    [6] 廖福,罗新,谢月清,等. 氡(222Rn)地下水-地表水相互作用中的应用研究进展[J]. 地学前缘(中国地质大学(北京); 北京大学),2022,29(3):76 − 87. [LIAO Fu,LUO Xin,XIE Yueqing,et al. Advances in 222Rn application in the study of groundwater-surface water interactions[J]. Earth Science Frontiers,2022,29(3):76 − 87. (in Chinese with English abstract)
    [7] LAMONTAGNE S,TAYLOR A,COOK P,et al. Field assessment of surface water-groundwater connectivity in a semi-arid river basin (Murray-Darling,Australia)[J]. Hydrological Processes,2014,28(4):1561 − 1572. doi:  10.1002/hyp.9691
    [8] CONSTANTZ J. Heat as a tracer to determine streambed water exchanges[J]. Water Resources Research,2008,44(4):W00D10.
    [9] RAUTIO A,KORKKA N K. Chemical and isotopic tracers indicating groundwater/surface-water interaction within a boreal lake catchment in Finland[J]. Hydrogeology Journal,2015,23(4):687 − 705. doi:  10.1007/s10040-015-1234-5
    [10] 杨艳林,靖晶,赵永波,等. 基于氢氧稳定同位素的武汉北部新城地表水-地下水转换关系研究[J]. 中国地质,2022,49(3):706 − 715. [YANG Yanlin,JING Jing,ZHAO Yongbo,et al. Conversion relationship between surface water and groundwater based on stable isotopes of D and 18O of new town in the northern Wuhan, Hubei[J]. Geology in China,2022,49(3):706 − 715. (in Chinese with English abstract)
    [11] 鲁程鹏,束龙仓,陈洵洪. 河床地形影响潜流交换作用的数值分析[J]. 水科学进展,2012,23(6):789 − 795. [LU Chengpeng,SHU Longcang,CHEN Xunhong. Numerical analysis of the impacts of bedform on hyporheic exchange[J]. Advances in Water Science,2012,23(6):789 − 795. (in Chinese with English abstract) doi:  10.14042/j.cnki.32.1309.2012.06.018
    [12] 鲁程鹏,张颖,朱静思,等. 基于热追踪方法的河流横断面潜流交换时空非均质特征研究[J]. 第四纪研究,2014,34(5):1094 − 1105. [LU Chengpeng,ZHANG Ying,ZHU Jingsi,et al. Temporal spatial patterns of hyporheic exchange along a river transect of dawen river through the heat tracing method[J]. Quaternary Sciences,2014,34(5):1094 − 1105. (in Chinese with English abstract) doi:  10.3969/j.issn.1001-7410.2014.05.18
    [13] 文广超,王文科,段磊,等. 基于水化学和稳定同位素定量评价巴音河流域地表水与地下水转化关系[J]. 干旱区地理,2018,41(4):734 − 743. [WEN Guangchao,WANG Wenke,DUAN Lei,et al. Quantitatively evaluating exchanging relationship between river water and groundwater in Bayin River Basin of northwest China using hydrochemistry and stable isotope[J]. Arid Land Geography,2018,41(4):734 − 743. (in Chinese with English abstract) doi:  10.12118/j.issn.1000-6060.2018.04.08
    [14] CARDENAS M B. Surface water-groundwater interface geomorphology leads to scaling of residence times[J]. Geophysical Research Letters,2008,35(8):307 − 315.
    [15] 束龙仓,宫荣,栾佳文,等. 地下水与地表水水量交换识别及交换量计算—以新汴河宿州段为例[J]. 水科学进展,2022,33(1):57 − 67. [SHU Longcang,GONG Rong,LUAN Jiawen,et al. A integrated method to quantify flow exchanges between surface water and groundwater:Take Suzhou section of the Xinbian River as an example[J]. Advances in Water Science,2022,33(1):57 − 67. (in Chinese with English abstract)
    [16] HUANG Peng,CHUI T F M. Hyporheic exchange in a straight stream with alternate bars[J]. Water Resources Research,2022,58(10):e2022WR032221.
    [17] 束龙仓,殷晓然,袁亚杰,等. 三江平原典型区河水与地下水水量交换的时空变化规律分析[J]. 水利学报,2021,52(10):1151 − 1162. [SHU Longcang,YIN Xiaoran,YUAN Yajie,et al. Temporal and spatial variation of water quantity exchange between surface water and groundwater in typical district of Sanjiang Plain[J]. Journal of Hydraulic Engineering,2021,52(10):1151 − 1162. (in Chinese with English abstract) doi:  10.13243/j.cnki.slxb.20210509
    [18] DRUMMOND J D,AQUINO T,DAVIES C R J,et al. Modeling contaminant microbes in rivers during both baseflow and stormflow[J]. Geophysical Research Letters,2022,49(8):e2021GL096514.
    [19] 李刚,马佰衡,周仰效,等. 白洋淀湖岸带地表水与地下水垂向交换研究[J]. 水文地质工程地质,2021,48(4):48 − 54. [LI Gang,MA Baiheng,ZHOU Yangxiao,et al. A study of vertical exchange between surface water and groundwater around the banks of Baiyangdian Lake[J]. Hydrogeology & Engineering Geology,2021,48(4):48 − 54. (in Chinese with English abstract) doi:  10.16030/j.cnki.issn.1000-3665.202008004
    [20] JASECHKO S,SEYBOLD H,PERRONE D,et al. Widespread potential loss of streamflow into underlying aquifers across the USA[J]. Nature,2021,591(7850):391 − 395. doi:  10.1038/s41586-021-03311-x
    [21] 雷米,周金龙,张杰,等. 新疆博尔塔拉河流域平原区地表水与地下水水化学特征及转化关系[J]. 环境科学,2022,43(4):1873 − 1884. [LEI Mi,ZHOU Jinlong,ZHANG Jie,et al. Hydrochemical characteristics and transformation relationship of surface water and groundwater in the plain area of Bortala River Basin,Xinjiang[J]. Environmental Science,2022,43(4):1873 − 1884. (in Chinese with English abstract)
    [22] TÓTH J. Groundwater as a geologic agent:An overview of the causes,processes,and manifestations[J]. Hydrogeology Journal,1999,7(1):1 − 14. doi:  10.1007/s100400050176
    [23] JIANG Qihao,JIN Guangqiu,TANG Hongwu,et al. Density-dependent solute transport in a layered hyporheic zone[J]. Advances in Water Resources,2020,142:103645. doi:  10.1016/j.advwatres.2020.103645
    [24] 吴佩鹏,束龙仓,鲁程鹏,等. 三峡水库蓄水前后下游河床沉积物渗透系数的变化分析[J]. 水文地质工程地质,2014,41(6):98 − 102. [WU Peipeng,SHU Longcang,LU Chengpeng,et al. An analysis of the changes in the riverbed sediment hydraulic conductivity in the downstream channel before and after the Three Gorges Reservoir impoundment[J]. Hydrogeology & Engineering Geology,2014,41(6):98 − 102. (in Chinese with English abstract) doi:  10.16030/j.cnki.issn.1000-3665.2014.06.018
    [25] WU Peipeng,SHU Longcang,COMTE J C,et al. The effect of typical geological heterogeneities on the performance of managed aquifer recharge:physical experiments and numerical simulations[J]. Hydrogeology Journal,2021,29(6):2107 − 2125. doi:  10.1007/s10040-021-02375-3
    [26] 陈孝兵,郑春阳,袁越. 河床沉积物非均质性影响下的潜流交换数值模拟[J]. 水科学进展,2019,30(2):220 − 229. [CHEN Xiaobing,ZHENG Chunyang,YUAN Yue. Modeling the impacts of streambed sediment heterogeneity on hyporheic exchange[J]. Advances in Water Science,2019,30(2):220 − 229. (in Chinese with English abstract) doi:  10.14042/j.cnki.32.1309.2019.02.007
    [27] 赵云章, 邵景力, 闫振鹏, 等. 黄河下游影响带地下水资源评价及可持续开发利用[M]. 北京: 中国大地出版社, 2002

    ZHAO Yunzhang, SHAO Jingli, YAN Zhenpeng, et al. Evaluation and sustainable exploitation of groundwater resources in the influenced zone of the lower Yellow River[M]. Beijing: China Land Press, 2002. (in Chinese)
    [28] 束龙仓. 美国内布拉斯加州普拉特河河床沉积物渗透系数的现场测定[J]. 水科学进展,2002,13(5):629 − 633. [SHU Longcang. Measurement in situ of streambed hydraulic conductivities in the Platte River,Nebraska[J]. Advances in Water Science,2002,13(5):629 − 633. (in Chinese with English abstract) doi:  10.3321/j.issn:1001-6791.2002.05.017
    [29] ANDERSON M P, WOESSNER W W, HUNT R J. Applied groundwater modeling: Simulation of flow and advective transport[M]. 2nd ed. London: Academic Press, 2015.
    [30] WU Guangdong,SHU Longcang,LU Chengpeng,et al. Variations of streambed vertical hydraulic conductivity before and after a flood season[J]. Hydrogeology Journal,2015,23(7):1603 − 1615. doi:  10.1007/s10040-015-1275-9
    [31] 童坤,束龙仓,黄修东,等. 雨洪水回灌过程中堵塞滤层特征试验[J]. 水利水电科技进展,2011,31(4):52 − 55. [TONG Kun,SHU Longcang,HUANG Xiudong,et al. Characteristics of mechanical clogging in rain-flood infiltration system[J]. Advances in Science and Technology of Water Resources,2011,31(4):52 − 55. (in Chinese with English abstract) doi:  10.3880/j.issn.1006-7647.2011.04.012
    [32] WANG Wenke,LI Junting,FENG Xizhou,et al. Evolution of stream-aquifer hydrologic connectedness during pumping experiment[J]. Journal of Hydrology,2011,402(3/4):401 − 414.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  3559
  • HTML全文浏览量:  176
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-15
  • 修回日期:  2022-10-18
  • 网络出版日期:  2023-04-17
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回