ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深部隧道爆破开挖诱发围岩损伤与扰动效应数值分析

余浪浪 王志亮 汪书敏 李松玉

余浪浪,王志亮,汪书敏,等. 深部隧道爆破开挖诱发围岩损伤与扰动效应数值分析[J]. 水文地质工程地质,2023,50(5): 117-124 doi:  10.16030/j.cnki.issn.1000-3665.202208059
引用本文: 余浪浪,王志亮,汪书敏,等. 深部隧道爆破开挖诱发围岩损伤与扰动效应数值分析[J]. 水文地质工程地质,2023,50(5): 117-124 doi:  10.16030/j.cnki.issn.1000-3665.202208059
YU Langlang, WANG Zhiliang, WANG Shumin, et al. Numerical analysis of damage and disturbance effect of surrounding rocks induced by deep tunnel blast excavation[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 117-124 doi:  10.16030/j.cnki.issn.1000-3665.202208059
Citation: YU Langlang, WANG Zhiliang, WANG Shumin, et al. Numerical analysis of damage and disturbance effect of surrounding rocks induced by deep tunnel blast excavation[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 117-124 doi:  10.16030/j.cnki.issn.1000-3665.202208059

深部隧道爆破开挖诱发围岩损伤与扰动效应数值分析

doi: 10.16030/j.cnki.issn.1000-3665.202208059
基金项目: 国家自然科学基金项目(12272119);国家自然科学基金雅砻江联合基金项目(U1965101)
详细信息
    作者简介:

    余浪浪(1999-),男,硕士研究生,主要从事岩石动力学方面的研究。E-mail:yulanglang1999@163.com

    通讯作者:

    王志亮(1969-),男,博士,教授,博士生导师,主要从事岩石力学特性与损伤破坏机理方面的研究。E-mail: cvewzL@hfut.edu.cn

  • 中图分类号: U455.6;P642.3

Numerical analysis of damage and disturbance effect of surrounding rocks induced by deep tunnel blast excavation

  • 摘要: 现阶段,不同地应力条件下深部岩体受爆破作用的损伤破坏分析尚显不足。为了研究深部隧道围岩爆破开挖损伤破坏规律,基于有限元软件ANSYS/LS-DYNA,采用Riedel-Hiermaier-Thoma本构模型,对不同地应力环境下隧道爆破效果影响因素、围岩扰动范围等问题进行数值分析。结果表明:双向等压隧道的断面损伤程度与地应力水平呈负相关;随着地应力上升,地应力对隧道底板的损伤抑制作用渐为明显;隧道腰部围岩受爆破扰动较为突出,其应力和振动速度均随侧压力系数增大而大幅升高,且振动速度增幅超过40%,明显高于顶部围岩;在垂直应力20 MPa条件下,腰部测点应力、振动速度幅值随侧压力系数增加而增大的趋势较缓;当垂直应力升高至60 MPa时,侧压力系数对围岩扰动的影响较大。相关结论对实际工程施工具有重要指导意义,同时对隧道围岩稳定性监测与支护参数优化具有一定参考价值。
  • 图  1  1/2隧道有限元模型

    Figure  1.  Finite element model of 1/2 tunnel

    图  2  炮孔与测点布置图(单位:cm)

    Figure  2.  Layout of the blasthole and measuring points (unit: cm)

    图  3  不同应力水平下开挖损伤分布图

    Figure  3.  Excavation damage under different stress levels

    图  4  不同地应力水平下两测点的应变时程曲线

    Figure  4.  Strain-time curves under different in-situ stress levels

    图  5  不同k值下开挖损伤分布图

    Figure  5.  Excavation damage distribution under different k values

    图  6  不同k值下X方向应力时程图

    Figure  6.  Stress-time curves in the X direction under different k values

    图  7  不同k值影响下X方向振动速度时程图

    Figure  7.  Vibration velocity histories in the X direction under the influence of different k values

    图  8  垂直应力下k对应力、振动速度峰值的影响

    Figure  8.  Influence of k on stress and peak vibration under different vertical stresses

    表  1  堵塞材料主要参数

    Table  1.   Main parameters of the stemmed material

    参数 密度
    /(kg·m−3
    剪切模量
    /GPa
    泊松比 A0 A1 A2 Pc
    取值 1 800 0.064 0.3 3.4×10−13 7.03×10−7 0.3 −6.9×10−8
      注:A0A1A2为屈服函数常量;Pc为拉伸压力切断值。
    下载: 导出CSV

    表  2  炸药的主要参数

    Table  2.   Main parameters of explosive

    炸药参数 密度/(kg·m−3 爆速/(m∙s−1 A/Pa R1 R2 E0/(J·m−3
    取值 1 500 7 450 6.25×1011 5.25 1.6 0.086×1011
    下载: 导出CSV

    表  3  空气材料主要参数

    Table  3.   Main parameters of air

    空气参数 ρ0/(kg·m−3 C4 C5 E/(J∙m−3
    取值 1.2 0.4 0.4 2.5×105
    下载: 导出CSV

    表  4  大理岩RHT主要参数

    Table  4.   Main parameters of the marble RHT model

    大理岩参数 密度/(kg· m−3 弹性模量/GPa B0 B1 T1/GPa T2/GPa A N fc/MPa
    取值 2763 12.43 0.9 0.9 46.72 0 1.65 0.56 130
    大理岩参数 $f_{\rm{s}}^*$ $f_{\rm{t}}^* $ Q0 B E0C/s−1 E0T/s−1 EC/s−1 ET/s−1 βc
    取值 0.25 0.1 0.0105 0.7 3.0×10–5 3.0×10–6 3.0×1025 3.0×1025 0.009756
    大理岩参数 βt $g_{\rm{c}}^* $ $g_{\rm{t}}^* $ ξ D1 D2 $\varepsilon_{\rm{p}}^{\rm{m}} $ Af Nf
    取值 0.01333 0.78 0.7 0.44 0.037 1 0.01 1.59 0.62
    大理岩参数 A1/GPa A2/GPa A3/GPa Pcrush/MPa Pcomp/GPa Np α0
    取值 46.72 42.05 –4.32 43.33 6 4 1.078
      注:B0B1T1T2为状态方程参数;AN为失效面参数;fc为抗压强度; $f_{\rm{s}}^* $、 $f_{\rm{t}}^* $为相对抗压、抗拉强度;Q0B为Lode角相关系数;E0CE0T为参考压缩、拉伸应变率;ECET为压缩、拉伸应变率;βcβt为压缩、拉伸应变率指数; $ g_{\rm{c}}^*$、 $g_{\rm{t}}^* $为压缩、拉伸屈服面参数;ξ为剪切模量折减系数;D1D2为损伤参数; $\varepsilon_{\rm{p}}^{\rm{m}} $为最小损伤残余应变;AfNf为剩余表面参数;A1A2A3为Hugoniot系数;PcrushPcomp为挤压、压实强度;Np为孔隙指数;α0为孔隙度。
    下载: 导出CSV
  • [1] 寇绍全. 从第4届岩石爆破国际会议看当前岩石爆破技术的发展趋势[J]. 力学进展,1994,24(1):132 − 134. [KOU Shaoquan. Trend analysis of rock blasting techniqune ifrom the fourth international symposium on rock fragmentation by blasting[J]. Advances in Mechanics,1994,24(1):132 − 134. (in Chinese with English abstract)

    KOU Shaoquan. Trend analysis of rock blasting techniqune ifrom the fourth international symposium on rock fragmentation by blasting[J]. Advances in Mechanics, 1994, 24(1): 132-134. (in Chinese with English abstract)
    [2] 吴丹红, 吴立, 闫天俊, 等. 基于EAHP模型的市政隧道原位二扩四爆破效果评价[J]. 地质科技通报, 2023, 42(3): 46 – 54.

    WU Danhong, WU Li, YAN Tianjun, et al. Evaluation of the blasting effects of insitu two-to-four lane expansion in the municipal tunnels based on EAHP model[J]. Bulletin of Geological Science and Technology, 2023, 42(3): 46 – 54. (in Chinese with English abstract)
    [3] 周宏伟,谢和平,左建平. 深部高地应力下岩石力学行为研究进展[J]. 力学进展,2005,35(1):91 − 99. [ZHOU Hongwei,XIE Heping,ZUO Jianping. Developments in researches on mechanical behaviors of rocks under the condition of high ground pressure in the depths[J]. Advances in Mechanics,2005,35(1):91 − 99. (in Chinese with English abstract)

    ZHOU Hongwei, XIE Heping, ZUO Jianping. Developments in researches on mechanical behaviors of rocks under the condition of high ground pressure in the depths[J]. Advances in Mechanics, 2005, 35(1): 91-99. (in Chinese with English abstract)
    [4] 路德春,马一丁,王国盛. 近接隧道列车运行时地表振动响应数值模拟[J]. 吉林大学学报(地球科学版),2021,51(5):1452 − 1462. [LU Dechun,MA Yiding,WANG Guosheng. Numerical study on ground surface vibration response under train load in multi adjacent tunnels[J]. Journal of Jilin University (Earth Science Edition),2021,51(5):1452 − 1462. (in Chinese with English abstract)

    LU Dechun, MA Yiding, WANG Guosheng. Numerical study on ground surface vibration response under train load in multi adjacent tunnels[J]. Journal of Jilin University(Earth Science Edition), 2021, 51(5): 1452-1462.(in Chinese with English abstract)
    [5] 张国华,陈礼彪,夏祥,等. 大断面隧道爆破开挖围岩损伤范围试验研究及数值计算[J]. 岩石力学与工程学报,2009,28(8):1610 − 1619. [ZHANG Guohua,CHEN Libiao,XIA Xiang,et al. Numerical simulation and experimental study of damage range of surrounding rock in large tunnel under blasting excavation[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(8):1610 − 1619. (in Chinese with English abstract)

    ZHANG Guohua, CHEN Libiao, XIA Xiang, et al. Numerical simulation and experimental study of damage range of surrounding rock in large tunnel under blasting excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(8): 1610-1619. (in Chinese with English abstract)
    [6] 李占海,朱万成,冯夏庭,等. 侧压力系数对马蹄形隧道损伤破坏的影响研究[J]. 岩土力学,2010,31(增刊 2):434 − 441. [LI Zhanhai,ZHU Wancheng,FENG XiaTing,et al. Effect of lateral pressure coefficients on damage and failure process of horseshoe-shaped tunnel[J]. Rock and Soil Mechanics,2010,31(Sup 2):434 − 441. (in Chinese with English abstract)

    LI Zhanhai, ZHU Wancheng, FENG XiaTing, et al. Effect of lateral pressure coefficients on damage and failure process of horseshoe-shaped tunnel[J]. Rock and Soil Mechanics, 2010, 31(Sup 2): 434-441.(in Chinese with English abstract)
    [7] 宁建国, 王成, 马天宝. 爆炸与冲击动力学[M]. 北京: 国防工业出版社, 2010.

    NING Jianguo, WANG Cheng, MA Tianbao. Explosion and shock dynamics[M]. Beijing: National Defense Industry Press, 2010. (in Chinese)
    [8] 于建新,李真珍,高帅杰,等. 水下深孔爆破岩石裂纹扩展及损伤规律[J]. 科学技术与工程,2022,22(7):2907 − 2913. [YU Jianxin,LI Zhenzhen,GAO Shuaijie,et al. Rock crack propagation and damage regularity due to underwater deep-hole blasting[J]. Science Technology and Engineering,2022,22(7):2907 − 2913. (in Chinese with English abstract)

    [YU Jianxin, LI Zhenzhen, GAO Shuaijie, et al. Rock crack propagation and damage regularity due to underwater deep-hole blasting[J]. Science Technology and Engineering, 2022, 22(7): 2907-2913.(in Chinese with English abstract)
    [9] XIE L X,LU W B,ZHANG Q B,et al. Analysis of damage mechanisms and optimization of cut blasting design under high in situ stresses[J]. Tunnelling and Underground Space Technology,2017,66:19 − 33. doi:  10.1016/j.tust.2017.03.009
    [10] 王海亮,高尚,张海义. 高地应力岩石双孔爆破损伤演化研究[J]. 工程爆破,2022,28(2):1 − 6. [WANG Hailiang,GAO Shang,ZHANG Haiyi. Research on damage evolution of rock caused by double-hole blasting under high in situ stress[J]. Engineering Blasting,2022,28(2):1 − 6. (in Chinese with English abstract)

    WANG Hailiang, GAO Shang, ZHANG Haiyi. Research on damage evolution of rock caused by double-hole blasting under high in situ stress[J]. Engineering Blasting, 2022, 28(2): 1-6. (in Chinese with English abstract)
    [11] 赵建平,程贝贝,卢伟,等. 深部高地应力下岩石双孔爆破的损伤规律[J]. 工程爆破,2020,26(5):14 − 20. [ZHAO Jianping,CHENG Beibei,LU Wei,et al. Damage law of rock double holes blasting under deep high in situ stress[J]. Engineering Blasting,2020,26(5):14 − 20. (in Chinese with English abstract)

    ZHAO Jianping, CHENG Beibei, LU Wei, et al. Damage law of rock double holes blasting under deep high in situ stress[J]. Engineering Blasting, 2020, 26(5): 14-20. (in Chinese with English abstract)
    [12] WANG Haochen,WANG Zhiliang,WANG Jianguo,et al. Effect of confining pressure on damage accumulation of rock under repeated blast loading[J]. International Journal of Impact Engineering,2021,156:103961. doi:  10.1016/j.ijimpeng.2021.103961
    [13] YILMAZ O,UNLU T. Three dimensional numerical rock damage analysis under blasting load[J]. Tunnelling and Underground Space Technology,2013,38:266 − 278. doi:  10.1016/j.tust.2013.07.007
    [14] 徐耀鉴,柒文英,曾凌方. 深埋硐室高围压条件下的围岩动力学响应[J]. 水文地质工程地质,2009,36(6):94 − 98. [XU Yaojian,QI Wenying,ZENG Lingfang. Dynamic response of surrounding rock with high stress in deep chamber[J]. Hydrogeology & Engineering Geology,2009,36(6):94 − 98. (in Chinese with English abstract)

    XU Yaojian, QI Wenying, ZENG Lingfang. Dynamic response of surrounding rock with high stress in deep chamber[J]. Hydrogeology & Engineering Geology, 2009, 36(6): 94-98. (in Chinese with English abstract)
    [15] 杨栋, 李海波, 夏祥, 等. 高地应力下隧道围岩动力损伤分析[J]. 岩土力学, 2013, 34(增刊2): 311 – 317

    YANG Dong, LI Haibo, XIA Xiang, et al. Study of dynamic damage of surrounding rocks for tunnels under high in-situ stress[J]. Rock and Soil Mechanics, 2013, 34(Sup 2): 311 – 317. (in Chinese with English abstract)
    [16] 杨栋,李海波,夏祥,等. 高地应力条件下爆破开挖诱发围岩损伤的特性研究[J]. 岩土力学,2014,35(4):1110 − 1116. [YANG Dong,LI Haibo,XIA Xiang,et al. Study of blasting-induced dynamic damage of tunnel surrounding rocks under high in situ stress[J]. Rock and Soil Mechanics,2014,35(4):1110 − 1116. (in Chinese with English abstract)

    YANG Dong, LI Haibo, XIA Xiang, et al. Study of blasting-induced dynamic damage of tunnel surrounding rocks under high in situ stress[J]. Rock and Soil Mechanics, 2014, 35(4): 1110-1116. (in Chinese with English abstract)
    [17] 张宁,李术才,徐帮树,等. 侧压力系数对海底隧道爆破效应影响数值分析[J]. 地下空间与工程学报,2010,6(2):334 − 340. [ZHANG Ning,LI Shucai,XU Bangshu,et al. Numerical analysis of the influence of lateral pressure coefficient of subsea tunnel on blasting vibration effects[J]. Chinese Journal of Underground Space and Engineering,2010,6(2):334 − 340. (in Chinese with English abstract)

    ZHANG Ning, LI Shucai, XU Bangshu, et al. Numerical analysis of the influence of lateral pressure coefficient of subsea tunnel on blasting vibration effects[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(2): 334-340. (in Chinese with English abstract)
    [18] 郭侃,雷战,艾欣,等. 延时时间对岩石爆破效果影响的探讨[J]. 工程爆破,2021,27(2):85 − 90. [GUO Kan,LEI Zhan,AI Xin,et al. Discussion on the influence of delay time on rock blasting effect[J]. Engineering Blasting,2021,27(2):85 − 90. (in Chinese with English abstract)

    GUO Kan, LEI Zhan, AI Xin, et al. Discussion on the influence of delay time on rock blasting effect[J]. Engineering Blasting, 2021, 27(2): 85-90. (in Chinese with English abstract)
    [19] 王伟祥,王志亮,贾帅龙,等. 动态载荷下大理岩断口形貌特征试验研究[J]. 水文地质工程地质,2022,49(3):118 − 124. [WANG Weixiang,WANG Zhiliang,JIA Shuailong,et al. An experimental study of the fracture morphology of marble under dynamic loading[J]. Hydrogeology & Engineering Geology,2022,49(3):118 − 124. (in Chinese with English abstract)

    WANG Weixiang, WANG Zhiliang, JIA Shuailong, et al. An experimental study of the fracture morphology of marble under dynamic loading[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 118-124. (in Chinese with English abstract)
    [20] 李傲,王志亮,封陈晨,等. 动态冲击下锦屏大理岩力学响应与能量特性[J]. 水文地质工程地质,2022,49(5):112 − 118. [LI Ao,WANG Zhiliang,FENG Chenchen,et al. Mechanical responses and energy characteristics of the Jinping marble under the dynamic impact[J]. Hydrogeology & Engineering Geology,2022,49(5):112 − 118. (in Chinese with English abstract)

    LI Ao, WANG Zhiliang, FENG Chenchen, et al. Mechanical responses and energy characteristics of the Jinping marble under the dynamic impact[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 112-118. (in Chinese with English abstract)
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  9
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-22
  • 修回日期:  2022-11-28
  • 刊出日期:  2023-09-19

目录

    /

    返回文章
    返回