ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广州地区岩质边坡崩塌影响范围计算方法初探

曾启强 王立朝 刘伟 张庆华 陈凌伟 楼康明 刘羊 樊亚男

曾启强,王立朝,刘伟,等. 广州地区岩质边坡崩塌影响范围计算方法初探[J]. 水文地质工程地质,2023,50(0): 1-10 doi:  10.16030/j.cnki.issn.1000-3665.202208053
引用本文: 曾启强,王立朝,刘伟,等. 广州地区岩质边坡崩塌影响范围计算方法初探[J]. 水文地质工程地质,2023,50(0): 1-10 doi:  10.16030/j.cnki.issn.1000-3665.202208053
ZENG Qiqiang, WANG Lichao, LIU Wei, et al. Calculation methods of the collapse influence range of a simple rock slope in the Guangzhou area[J]. Hydrogeology & Engineering Geology, 2023, 50(0): 1-10 doi:  10.16030/j.cnki.issn.1000-3665.202208053
Citation: ZENG Qiqiang, WANG Lichao, LIU Wei, et al. Calculation methods of the collapse influence range of a simple rock slope in the Guangzhou area[J]. Hydrogeology & Engineering Geology, 2023, 50(0): 1-10 doi:  10.16030/j.cnki.issn.1000-3665.202208053

广州地区岩质边坡崩塌影响范围计算方法初探

doi: 10.16030/j.cnki.issn.1000-3665.202208053
基金项目: 广东省重点领域研发计划项目(2020B0101130009);广东省城市感知与监测预警企业重点实验室基金项目(2020B121202019);广州市城市规划勘测设计研究院科技基金项目-广州市地面灾变监测预警体系及技术指南(RDI2210204140);广州市城市规划勘测设计研究院科技基金项目-广州市地面灾变类型与分布特征研究(RDI2210204146)
详细信息
    作者简介:

    曾启强(1995-),男,硕士,助理工程师,从事地质灾害调查评价与岩土工程勘察。E-mail:zengqiqiang@live.com

    通讯作者:

    王立朝,男,博士,教授级高级工程师,从事地质灾害调查评价与地质灾害形成机理与防治研究。E-mail:wanglichao@mail.cgs.gov.cn

Calculation methods of the collapse influence range of a simple rock slope in the Guangzhou area

  • 摘要: 广州市地形地貌复杂多样,经济发达,人类工程活动密集,由此产生的大量人工开挖边坡危岩体对当地生产生活带来了巨大隐患。为准确评估边坡危岩体影响范围,提升边坡危岩体灾害防治能力,降低崩塌威胁,亟需完善边坡危岩体的影响范围计算模型。本研究在广州市危岩体调查的基础上归纳出常见边坡危岩体的类型和坡形特征,并据此分类建立危岩体影响范围物理几何模型,综合考虑坡面摩擦力、块体碰撞、弹跳、碎裂、接触面覆盖物性质和回弹系数、地形条件、地震等崩塌运动过程的主要影响因素,通过合理概化运动过程要素建立起直线型、曲线型边坡在不同坡度条件下的崩塌影响范围计算模型,并根据地震峰值加速度对崩塌体动能的影响求得地震工况下崩塌影响范围的扩大系数。该模型在前人研究基础上进一步归纳总结坡形分类,完整给出常见地形条件和工况下边坡危岩体最大影响范围的计算模型,在获取坡高、坡度和地表特征后即可计算得出危岩体影响范围。与实际验证比对,模型结果在保证一定安全距离的基础上相对误差较小,可做到快速准确的对常见人工边坡边坡危岩体最大影响范围进行评价,为边坡危岩体防治提供可靠依据。
  • 图  1  广州市南沙区大井天山石场边坡

    Figure  1.  Slope of the Dajing Tianshan Stone Farm in Nansha District of Guangzhou

    图  2  广州市南沙区芦湾上街63号后侧边坡

    Figure  2.  Side slope behind No.63 Luwan Street in Nansha District of Guangzhou

    图  3  广州市南沙区大岗镇砂岩质陡坡

    Figure  3.  Sandstone steep slope near Dagang Town in Nansha District of Guangzhou

    图  4  直线型边坡崩塌块体运动过程概化图

    Figure  4.  Schematic diagram of motion process of a collapse block in the linear slope

    图  5  地面向边坡方向倾斜运动过程概化图

    Figure  5.  Schematic diagram of the inclined movement process of the threatened area towards the slope

    图  6  地面向远离边坡方向倾斜运动过程概化图

    Figure  6.  Schematic diagram of the tilted movement process of the threatened area away from the slope

    图  7  曲线型边坡运动过程概化图

    Figure  7.  Schematic diagram of the curve slope movement process

    图  8  曲线型边坡地面向边坡方向倾斜运动过程概化图

    Figure  8.  Generalized diagram of the sloping motion process of curved slope facing the slope direction

    图  9  曲线型边坡地面向远离边坡方向倾斜运动过程概化图

    Figure  9.  Generalized diagram of the sloping motion process of the curved slope away from the slope

    图  10  大角一路北侧边坡剖面图

    Figure  10.  The north side slope section of the First Big Horn road

    图  11  南沙区进港大道北侧边坡剖面图

    Figure  11.  The north side slope section of the Jingang Avenue in Nansha District

    表  1  常见坡面岩块滚动摩擦系数[22]

    Table  1.   Rolling friction coefficients of common slope blocks

    坡面特征滚动摩擦系数
    光滑岩面、混凝土表面0.30~0.60
    软岩面、强风化硬岩面0.40~0.60
    块石堆积坡面0.55~0.70
    密实碎石堆积坡面、硬土坡面、(植被灌木从)发育0.55~0.85
    密实碎石堆积坡面、硬土坡面、植被不发育或少量杂草0.50~0.75
    松散碎石坡面、软土坡面、植被(灌木丛为主)发育0.50~0.85
    软土坡面、植被不发育或少量杂草0.50~0.85
    下载: 导出CSV

    表  2  崩塌防治工程勘察规范推荐岩块回弹系数

    Table  2.   Block springback coefficient recommended by the investigation code of collapse prevention engineering

    碰撞系数地面岩性
    硬岩软岩硬土普通土松土
    法向回弹系数$ {R}_{n} $0.40.350.300.260.22
    切向回弹系数$ {R}_{t} $0.860.840.810.750.65
    下载: 导出CSV

    表  3  铁道部运输局推荐岩块回弹系数

    Table  3.   Rock springback coefficient recommended by the Transportation Bureau of the Ministry of Railways

    坡面特征法向恢复系数$ {\mathit{R}}_{\mathit{n}} $
    光滑而坚硬的表面和铺砌面,如人行道或光滑的基岩面0.37~0.42
    多数为基岩和砾岩区的斜面0.33~0.37
    硬土边坡0.30~0.33
    软土边坡0.28~0.30
    坡面特征切向恢复系数$ {\mathit{R}}_{\mathit{t}} $
    光滑而坚硬的表面和铺砌面,如人行道或光滑的基岩面0.87~0.92
    多数为基岩和无植被覆盖的斜坡0.83~0.87
    多数为有少量植被的斜坡0.82~0.85
    植被覆盖的斜坡和有稀少植被覆盖的土质边坡0.80~0.83
    灌木林覆盖的土质边坡0.78~0.82
    下载: 导出CSV

    表  4  不同计算方法所得影响范围对照表

    Table  4.   Comparison of the influence range obtained with different calculation methods

    边坡名称南沙区大角一路北侧边坡南沙进港大道北侧边坡
    坡高h(m)207
    边坡坡度θ1(°)8580
    边坡摩擦系数f0.50.5
    威胁区摩擦系数f'0.70.4
    法向恢复系数Rn0.250.4
    切向恢复系数Rt0.750.87
    模型计算运动距离(m)1.542.32
    模型计算影响范围(m)5.523.7
    RocFall模型影响范围(m)4.658.9
    实际崩塌体堆积范围(m)3.652.6
    下载: 导出CSV
  • [1] 胡厚田. 崩塌落石研究[J]. 铁道工程学报, 2005, 22(增刊1): 387-391

    HU Houtian. Research on the collapse and falling stone[J]. Journal of Railway Engineering Society, 2005, 22(Sup 1): 387-391. (in Chinese with English abstract)
    [2] 刘传正. 中国崩塌滑坡泥石流灾害成因类型[J]. 地质论评,2014,60(4):858 − 868. [LIU Chuanzheng. Genetic types of landslide and debris flow disasters in China[J]. Geological Review,2014,60(4):858 − 868. (in Chinese with English abstract) doi:  10.16509/j.georeview.2014.04.017
    [3] 亚南,王兰生,赵其华,等. 崩塌落石运动学的模拟研究[J]. 地质灾害与环境保护,1996,7(2):25 − 32. [YA Nan,WANG Lansheng,ZHAO Qihua,et al. Simulation study of rockfall kinematics[J]. Journal of Geological Hazards and Enveronment Preservation,1996,7(2):25 − 32. (in Chinese with English abstract)
    [4] 肖智勇. 高陡边坡崩塌危岩体运动轨迹及冲击能量分析[J]. 路基工程,2021(2):187 − 192. [XIAO Zhiyong. Analysis of movement trajectory and impact energy of dangerous rock mass in high and steep slope collapse[J]. Subgrade Engineering,2021(2):187 − 192. (in Chinese with English abstract) doi:  10.13379/j.issn.1003-8825.202011017
    [5] 廖俊展. 地质灾害治理设计中崩塌落石的运动特征分析[J]. 山西建筑,2021,47(19):72 − 75. [LIAO Junzhan. Analysis on the motion characteristic of rockfall in the designing about geological disaster treatment[J]. Shanxi Architecture,2021,47(19):72 − 75. (in Chinese with English abstract) doi:  10.13719/j.cnki.1009-6825.2021.19.027
    [6] 王伟才. 崩塌落石运动特征评判及量化分析[J]. 西部探矿工程,2021,33(8):15 − 18. [WANG Weicai. Evaluation and quantitative analysis of the characteristics of rockfall movement[J]. West-China Exploration Engineering,2021,33(8):15 − 18. (in Chinese with English abstract) doi:  10.3969/j.issn.1004-5716.2021.08.005
    [7] 李娟,何亮,荀晓慧. 强震作用下崩塌滚石冲击耗能损伤演化分析[J]. 水文地质工程地质,2022,49(2):157 − 163. [LI Juan,HE Liang,XUN Xiaohui. An evolution analysis of the impact energy damage of collapsed rolling stones under strong earthquakes[J]. Hydrogeology & Engineering Geology,2022,49(2):157 − 163. (in Chinese with English abstract)
    [8] WANG Xing,XIA Yongxu,ZHOU Tianyue. Theoretical analysis of rockfall impacts on the soil cushion layer of protective structures[J]. Advances in Civil Engineering,2018,2018:1 − 18.
    [9] 王林峰,刘丽,唐芬,等. 基于落石棚洞冲击试验的落石冲击力研究[J]. 防灾减灾工程学报,2018,38(6):973 − 979. [WANG Linfeng,LIU Li,TANG Fen,et al. Study on impact force of rockfall impact experiment on shed tunnel[J]. Journal of Disaster Prevention and Mitigation Engineering,2018,38(6):973 − 979. (in Chinese with English abstract) doi:  10.13409/j.cnki.jdpme.2018.06.011
    [10] 吴建利,胡卸文,梅雪峰,等. 落石冲击混凝土板与缓冲层组合结构的动力响应[J]. 水文地质工程地质,2021,48(1):78 − 87. [WU Jianli,HU Xiewen,MEI Xuefeng,et al. Dynamic response of RC slab with cushion layer composed of sandy soil to rockfall impact[J]. Hydrogeology & Engineering Geology,2021,48(1):78 − 87. (in Chinese with English abstract) doi:  10.16030/j.cnki.issn.1000-3665.202004029
    [11] ZHU Chun,WANG Dongsheng,XIA Xing,et al. The effects of gravel cushion particle size and thickness on the coefficient of restitution in rockfall impacts[J]. Natural Hazards and Earth System Sciences,2018,18(6):1811 − 1823. doi:  10.5194/nhess-18-1811-2018
    [12] ZHANG Yulong,LIU Zaobao,SHI Chong,et al. Three-dimensional reconstruction of block shape irregularity and its effects on block impacts using an energy-based approach[J]. Rock Mechanics and Rock Engineering,2018,51(4):1173 − 1191. doi:  10.1007/s00603-017-1385-x
    [13] CAVIEZEL A,DEMMEL S E,RINGENBACH A,et al. Reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopes[J]. Earth Surface Dynamics,2019,7(1):199 − 210. doi:  10.5194/esurf-7-199-2019
    [14] AZZONI A,LA BARBERA G,ZANINETTI A. Analysis and prediction of rockfalls using a mathematical model[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics,1995,32(7):709 − 724.
    [15] CROSTA G B,AGLIARDI F. A methodology for physically based rockfall hazard assessment[J]. Natural Hazards and Earth System Sciences,2003,3(5):407 − 422. doi:  10.5194/nhess-3-407-2003
    [16] HUNGR O,EVANS S G,BOVIS M J,et al. A review of the classification of landslides of the flow type[J]. Environmental and Engineering Geoscience,2001,7(3):221 − 238. doi:  10.2113/gseegeosci.7.3.221
    [17] BOURRIER F,LAMBERT S,BAROTH J. A reliability-based approach for the design of rockfall protection fences[J]. Rock Mechanics and Rock Engineering,2015,48(1):247 − 259. doi:  10.1007/s00603-013-0540-2
    [18] DORREN L, BERGER F. New approaches for 3D rockfall modelling with or without the effect of forest in Rockyfor3D[C]//EGU General Assembly Conference Abstracts. 2010.
    [19] 彭卫平,刘伟. 广州城市地质研究与城市可持续发展[J]. 城市勘测,2005(6):51 − 53. [PENG Weiping,LIU Wei. Guangzhou urban geological research and urban sustainable development[J]. Urban Geotechnical Investigation & Surveying,2005(6):51 − 53. (in Chinese with English abstract)
    [20] 曾志林. 广东省广州市黄埔区保利林语山庄会所后山崩塌地质灾害勘查报告[R]. 广州: 广东省有色矿山地质灾害防治中心, 2019

    Zeng Zhilin. Geological disaster investigation report of the collapse of the back mountain of the Baoli Linyu Villa Club in Huangpu District, Guangzhou City, Guangdong Province[R]. Guangzhou: Guangdong non-ferrous mine geological disaster prevention center, 2019. (in Chinese)
    [21] 吕庆,孙红月,翟三扣,等. 边坡滚石运动的计算模型[J]. 自然灾害学报,2003,12(2):79 − 84. [吕庆LÜ Qing,SUN Hongyue,ZHAI Sankou,et al. Evaluation models of rockfall trajectory[J]. Journal of Natural Disasters,2003,12(2):79 − 84. (in Chinese with English abstract) doi:  10.13577/j.jnd.2003.0214
    [22] 韩振华,陈鑫,王学良,等. 四川罗家青杠岭崩塌风险的定量评价研究[J]. 工程地质学报,2017,25(2):520 − 530. [HAN Zhenhua,CHEN Xin,WANG Xueliang,et al. Risk assessment for luojiaqinggangling rockfall[J]. Journal of Engineering Geology,2017,25(2):520 − 530. (in Chinese with English abstract) doi:  10.13544/j.cnki.jeg.2017.02.032
    [23] 程强,苏生瑞. 汶川地震崩塌滚石坡面运动特征[J]. 岩土力学,2014,35(3):772 − 776. [CHENG Qiang,SU Shengrui. Movement characteristics of collapsed stones on slopes induced by Wenchuan earthquake[J]. Rock and Soil Mechanics,2014,35(3):772 − 776. (in Chinese with English abstract) doi:  10.16285/j.rsm.2014.03.011
    [24] 于帅印. 河南省山地丘陵区地质灾害风险评价[D]. 西安: 长安大学, 2018

    YU Shuaiyin. Risk assessment of geological disasters in mountainous and hilly areas of Henan Province[D]. Xi’an: Changan University, 2018. (in Chinese with English abstract)
    [25] 陆明. 危岩崩塌运动数值模拟及治理措施研究[D]. 南宁: 广西大学, 2017

    LU Ming. Study on numerical simulation of dangerous rock collapse movement and control measures[D]. Nanning: Guangxi University, 2017. (in Chinese with English abstract)
    [26] 王颂,张路青,周剑,等. 青藏铁路设兴村段崩塌特征分析与运动学模拟[J]. 工程地质学报,2020,28(4):784 − 792. [WANG Song,ZHANG Luqing,ZHOU Jian,et al. Characteristic analysis and kinematic simulation of rockfall along shexing village section of Qinghai-Tibet railway[J]. Journal of Engineering Geology,2020,28(4):784 − 792. (in Chinese with English abstract) doi:  10.13544/j.cnki.jeg.2019-519
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  186
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-19
  • 录用日期:  2023-03-01
  • 修回日期:  2023-02-23

目录

    /

    返回文章
    返回