ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD 收录期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沧州地区土层固结特征与地面沉降临界水位研究

王云龙 陈晔 郭海朋 孟静 王海刚 臧西胜 朱菊艳

王云龙,陈晔,郭海朋,等. 沧州地区土层固结特征与地面沉降临界水位研究[J]. 水文地质工程地质,2023,50(0): 1-8 doi:  10.16030/j.cnki.issn.1000-3665.202208040
引用本文: 王云龙,陈晔,郭海朋,等. 沧州地区土层固结特征与地面沉降临界水位研究[J]. 水文地质工程地质,2023,50(0): 1-8 doi:  10.16030/j.cnki.issn.1000-3665.202208040
WANG Yunlong, CHEN Ye, GUO Haipeng, et al. A study of the critical groundwater level related to soil consolidation characteristics of land subsidence in Cangzhou[J]. Hydrogeology & Engineering Geology, 2023, 50(0): 1-8 doi:  10.16030/j.cnki.issn.1000-3665.202208040
Citation: WANG Yunlong, CHEN Ye, GUO Haipeng, et al. A study of the critical groundwater level related to soil consolidation characteristics of land subsidence in Cangzhou[J]. Hydrogeology & Engineering Geology, 2023, 50(0): 1-8 doi:  10.16030/j.cnki.issn.1000-3665.202208040

沧州地区土层固结特征与地面沉降临界水位研究

doi: 10.16030/j.cnki.issn.1000-3665.202208040
基金项目: 国家自然科学基金项目(41877294);中国地质调查局地质调查项目(DD20190679;DD20160235)
详细信息
    作者简介:

    王云龙(1984-),男,硕士,高级工程师,从事地面沉降与地裂缝等地质灾害研究工作。E-mail:wangyunlong@mail.cgs.gov.cn

    通讯作者:

    郭海朋(1979-),男,博士,教授级高工,从事水文地质与地面沉降调查研究工作。E-mail:guohaipeng@mail.cgs.gov.cn

  • 中图分类号: P642

A study of the critical groundwater level related to soil consolidation characteristics of land subsidence in Cangzhou

  • 摘要: 沧州市长期以来面临严重的地面沉降问题,在控制沉降发展的前提下,为合理利用地下水资源,需要确立开采水位埋深警戒线。本文针对地面沉降综合防治如何确定临界水位这一科学问题,以沧州三个典型沉降区土样为研究对象,分析了地层固结特征,通过关联地层厚度的方式改进了以先期固结压力求解临界水位的方法,结合多年来地面沉降与地下水水位监测数据,对沧州市临界水位进行了综合定量评估。本文研究表明:沧州地区0 m~150 m以内多为正常固结或欠固结土,150 m以下普遍为超固结土,非弹性释水变形是影响该地区地面沉降速率变化的重要因素。运用改进后的方法计算出沧州市区、肃宁县及东光县的临界水位埋深分别为66.8 m、67.5 m、67.8 m。综合分析沧州市区累计地面沉降与地下水水位变化资料,得出两者之间的指数函数关系,并以沉降速率为指标,求得65~70 m为沧州市区临界水位区间范围。在验证了两种方法计算结果一致性的基础上,最终将65 m作为沧州市区采取地面沉降防控措施的参考临界水位,为地方政府制定合理的地下水开采方案提供可靠依据。
  • 图  1  钻孔位置分布图

    Figure  1.  Distribution of the drilling positions

    图  2  沧州地区土样自重应力与先期固结压力关系图

    Figure  2.  Relationships between Po and Pc of the soil samples at different depths in Cangzhou

    图  3  沧州地区ORC与先期固结压力对比图

    Figure  3.  Comparison of Po and Pc in different areas of Cangzhou

    图  4  沧州市区平均沉降速率、累计沉降量与地下水位关系曲线图

    Figure  4.  Curves of the subsiding rate, accumulative subsidence and groundwater level in Cangzhou

    表  1  沧州地区第Ⅲ含水层组土样基本情况及临界水位降深统计表

    Table  1.   Statistics of critical groundwater level drawdown and basic information of soil samples from the third aquifer group in Cangzhou

    地名土层层厚/m取样与测试临界水位降深/m
    取样点高程/m前期固结压力/MPa超固结比ORC压缩指数Cc回弹指数Cs
    沧州市区C122.0−186.12.721.350.10.0371.3
    C231.1−217.22.981.270.30.0464.8
    C332.6−249.83.251.210.30.0357.9
    C425.1−274.93.321.120.20.0537.6
    C540.0−314.94.361.290.20.0599.9
    C628.3−343.14.071.100.30.0339.2
    肃宁县S116.8−175.62.551.220.40.0521.3
    S212.0−187.62.921.310.20.0344.6
    S311.8−199.42.921.240.20.0532.7
    S415.2−214.62.951.170.30.0519.6
    S512.0−226.63.011.140.30.0312.4
    S610.3−236.93.271.190.30.0327.1
    S714.5−251.43.341.140.30.0418.0
    S852.2−303.64.051.160.30.0432.8
    S94.5−308.14.291.210.20.0451.7
    东光县D19.0−166.52.321.220.20.0341.2
    D217.3−183.82.591.240.20.0350.0
    D314.4−198.22.821.250.20.0257.3
    D411.3−209.52.961.250.20.0359.0
    D529.0−238.53.191.190.30.0350.5
    D630.0−268.53.751.250.20.0375.1
    D728.0−296.54.081.240.30.0378.0
    D819.5−3164.291.220.30.0378.3
    D916.7−332.74.391.190.30.0370.5
    下载: 导出CSV

    表  2  沧州地区第Ⅲ含水层组临界水位埋深表

    Table  2.   The critical groundwater level depths of the third aquifer group in Cangzhou

    地区临界水位
    降深/m
    观测水位
    埋深/m
    观测孔地面
    高程/m
    临界水位埋深
    (高程)/m
    沧州市区64.32.56.266.8(−60.6)
    肃宁县28.239.312.567.5(−54.7)
    东光县64.73.111.267.8(−56.6)
    下载: 导出CSV
  • [1] 房浩,何庆成,徐斌,等. 沧州地区地面沉降灾害风险评价研究[J]. 水文地质工程地质,2016,43(4):159 − 164. [FANG Hao,HE Qingcheng,XU Bin,et al. A study of risk assessment of the land subsidence in Cangzhou[J]. Hydrogeology & Engineering Geology,2016,43(4):159 − 164. (in Chinese with English abstract)
    [2] PHIEN-WEJ N,GIAO P H,NUTALAYA P. Land subsidence in Bangkok,Thailand[J]. Engineering Geology,2006,82(4):187 − 201. doi:  10.1016/j.enggeo.2005.10.004
    [3] MADANI K,AGHAKOUCHAK A,MIRCHI A. Iran’s socio-economic drought:challenges of a water-bankrupt nation[J]. Iranian Studies,2016,49(6):997 − 1016. doi:  10.1080/00210862.2016.1259286
    [4] FAUNT C C,SNEED M,TRAUM J,et al. Water availability and land subsidence in the Central Valley,California,USA[J]. Hydrogeology Journal,2016,24(3):675 − 684. doi:  10.1007/s10040-015-1339-x
    [5] CONWAY B D. Land subsidence and earth fissures in south-central and southern Arizona,USA[J]. Hydrogeology Journal,2016,24(3):649 − 655. doi:  10.1007/s10040-015-1329-z
    [6] MILLER M M,SHIRZAEI M,ARGUS D. Aquifer mechanical properties and decelerated compaction in Tucson,Arizona[J]. Journal of Geophysical Research:Solid Earth,2017,122(10):8402 − 8416. doi:  10.1002/2017JB014531
    [7] 袁伟民,张金平. 地面沉降成灾临界水位的识别及意义[J]. 灾害学,2007,22(2):67 − 69. [YUAN Weimin,ZHANG Jinping. Identification of disaster-causal critical water table of land subsidence and its significance[J]. Journal of Catastrophology,2007,22(2):67 − 69. (in Chinese with English abstract)
    [8] 牛修俊. 地层的固结特性与地面沉降临界水位控沉[J]. 中国地质灾害与防治学报,1998,9(2):68 − 74. [NIU Xiujun. Characteristics of strata consolidation and land subsidence controlling by critical water level[J]. The Chinese Journal of Geological Hazard and Control,1998,9(2):68 − 74. (in Chinese with English abstract)
    [9] 赵慧,钱会,彭建兵. 超固结土层垂向形变机理及临界水位控沉分析—以西安南郊钻孔土样研究为例[J]. 中国地质灾害与防治学报,2008,19(1):124 − 127. [ZHAO Hui,QIAN Hui,PENG Jianbing. Deformation mechanism of over-consolidation soil and land subsidence controlled by critical water-level[J]. The Chinese Journal of Geological Hazard and Control,2008,19(1):124 − 127. (in Chinese with English abstract) doi:  10.3969/j.issn.1003-8035.2008.01.027
    [10] 赵慧,冉兴龙,李渊. 根据地面沉降与地下水头的关系求地面沉降临界水位[J]. 勘察科学技术,2005(2):19 − 23. [ZHAO Hui,RAN Xinglong,LI Yuan. To determine critical water level by correlation between land subsidence and groundwater drawdown[J]. Site Investigation Science and Technology,2005(2):19 − 23. (in Chinese with English abstract) doi:  10.3969/j.issn.1001-3946.2005.02.006
    [11] 李国和,荆志东,许再良. 京沪高速铁路沿线地面沉降与地下水位变化关系探讨[J]. 水文地质工程地质,2008,35(6):90 − 94. [LI Guohe,JING Zhidong,XU Zailiang. A discussion of the correlation between land subsidence and groundwater level variation along the Jinghu high speed railway[J]. Hydrogeology & Engineering Geology,2008,35(6):90 − 94. (in Chinese with English abstract)
    [12] 姜媛,田芳,罗勇,等. 北京地区基于不同地面沉降阈值的地下水位控制分析[J]. 中国地质灾害与防治学报,2015,26(1):37 − 42. [JIANG Yuan,TIAN Fang,LUO Yong,et al. Groundwater control target under different threshold of land subsidence in Beijing[J]. The Chinese Journal of Geological Hazard and Control,2015,26(1):37 − 42. (in Chinese with English abstract)
    [13] 邢忠信,李和学,张熟,等. 沧州市地面沉降研究及防治对策[J]. 地质调查与研究,2004,27(3):157 − 163. [XING Zhongxin,LI Hexue,ZHANG Shu,et al. Surface subsidence and its countermeasures in Cangzhou city[J]. Geological Survey and Research,2004,27(3):157 − 163. (in Chinese with English abstract)
    [14] POLAND J F, DAVIS G H. Land subsidence due to withdrawal of fluids[M]//Reviews in Engineering Geology. Boulder: Geological Society of America, 1969: 187 − 270.
    [15] GALLOWAY D L,BURBEY T J. Review:Regional land subsidence accompanying groundwater extraction[J]. Hydrogeology Journal,2011,19(8):1459 − 1486. doi:  10.1007/s10040-011-0775-5
    [16] GAO M L,GONG H L,CHEN B B,et al. Regional land subsidence analysis in eastern Beijing plain by InSAR time series and wavelet transforms[J]. Remote Sensing,2018,10(3):365. doi:  10.3390/rs10030365
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  19
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-16
  • 录用日期:  2022-12-14
  • 修回日期:  2022-12-04

目录

    /

    返回文章
    返回