ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

散粒体滑坡涌浪运动特征与能量转化规律研究

王佳佳 陈浩 肖莉丽 李枝强 许昕 向宇恒 车思璐

王佳佳,陈浩,肖莉丽,等. 散粒体滑坡涌浪运动特征与能量转化规律研究[J]. 水文地质工程地质,2023,50(0): 1-13 doi:  10.16030/j.cnki.issn.1000-3665.202207022
引用本文: 王佳佳,陈浩,肖莉丽,等. 散粒体滑坡涌浪运动特征与能量转化规律研究[J]. 水文地质工程地质,2023,50(0): 1-13 doi:  10.16030/j.cnki.issn.1000-3665.202207022
WANG Jiajia, CHEN Hao, XIAO Lili, et al. A study of the kinematic characteristics and energy conversion of waves generated by granular landslide[J]. Hydrogeology & Engineering Geology, 2023, 50(0): 1-13 doi:  10.16030/j.cnki.issn.1000-3665.202207022
Citation: WANG Jiajia, CHEN Hao, XIAO Lili, et al. A study of the kinematic characteristics and energy conversion of waves generated by granular landslide[J]. Hydrogeology & Engineering Geology, 2023, 50(0): 1-13 doi:  10.16030/j.cnki.issn.1000-3665.202207022

散粒体滑坡涌浪运动特征与能量转化规律研究

doi: 10.16030/j.cnki.issn.1000-3665.202207022
基金项目: 国家自然科学基金(41907237;41907234);国家重点研发计划(2019YFB1600702;2021YFB1600302);云南省交通厅科技项目(云交科2018-12)
详细信息
    作者简介:

    王佳佳(1988-),男,博士,副教授,主要从事地质灾害动力学研究。E-mail:jwang@chd.edu.cn

    通讯作者:

    肖莉丽(1985-),女,博士,副教授,主要从事滑坡涌浪灾害动力学研究。E-mail:llxiao@chd.edu.cn

A study of the kinematic characteristics and energy conversion of waves generated by granular landslide

  • 摘要: 滑坡涌浪灾害造成的伤亡和损失一般远超滑坡灾害本身,已引起广泛关注。针对该类灾害的预测评价一直是研究的难点,精细刻画滑坡涌浪运动特征和能量转化规律是解决问题的关键和前提。因此,本文以天然碎石模拟散粒体滑坡,建立缩尺的矩形水槽滑坡涌浪三维物理试验模型,研究滑坡体积、速度和水深对堆积体形态和涌浪特征的影响以及滑体与水体能量转化规律。研究结论包括:(1)滑体通过冲击、挤压和抬升水体形成涌浪的特征受滑体规模和形态影响显著;厚度大且速度快的滑体趋向产生非线性过渡波而厚度小且速度低的滑体一般产生非线性震荡波;(2)基于试验提出的体积效应和速度效应揭示了一定水深的涌浪规模与滑坡体积和速度呈正相关规律,水深效应则解释了一定波能的涌浪在波形和速度上的分布差异,结果表明浅水比深水工况涌浪高度平均高出67%、波速平均高出51.17%;(3)基于试验的数值反演总结了滑体势能与波能转化率为1.00%~3.07%,由于三维试验中滑体与水体在水平和环向的扩散造成更多能量耗散,相较二维试验转化率较低。本文探讨了散粒体滑坡运动过程和首浪产生、传播及爬高特征,揭示了滑体-水体能量转化基本规律,研究成果对滑坡涌浪防灾减灾工作具有一定的理论价值和意义。
  • 图  1  滑坡涌浪试验模型尺寸示意图

    Figure  1.  Schematic diagram of the physical model experiment of landslide waves

    图  2  滑坡涌浪物理试验模型实景图

    Figure  2.  Physical experiment model of landslide waves

    图  3  水/土相互作用正面、侧面图

    Figure  3.  Front and side diagrams of water/soil interaction

    图  4  散粒体堆积展布形态及WG1波高变化

    Figure  4.  Landslide accumulation and wave forms of WG1

    图  5  散粒体滑坡涌浪两种典型波形及K2V2W1工况WG1~WG6位置波形曲线

    Figure  5.  Two typical waveforms of granular landslide generated impulse wave and wave curves at gauges WG1−WG6 in K2V2W1

    图  6  不同滑速度(V1、V2、V3)下首浪高度传播衰减曲线

    Figure  6.  Wave attenuation under scenarios of V1, V2 and V3

    图  7  不同下滑速度(V1、V2、V3)沿纵剖面Z波速变化曲线

    Figure  7.  Wave velocity at longitudinal section Z under scenarios of V1, V2 and V3

    图  8  不同滑坡体积(K1、K2、K3)首浪高度传播衰减曲线

    Figure  8.  First wave attenuates under scenarios of K1, K2 and K3

    图  9  不同滑体体积(K1、K2、K3)沿纵剖面Z波速变化曲线

    Figure  9.  Wave velocity at longitudinal section Z under scenarios of K1, K2 and K3

    图  10  试验工况波形简图

    Figure  10.  Sketch dirgrams of test model waveforms

    图  11  K2V2W1试验工况能量转化图

    Figure  11.  Energy conversion of the test model K2V2W1

    表  1  试验设计方案

    Table  1.   Experimental design scheme

    K体积(m3V下滑高度(cm)/速度(m$ \cdot $s-1W水深
    (cm)
    K11.56×10-2V122.6/1.06W1(25)
    K23.06×10-2V253.0/1.66W2(50)
    K36.25×10-2V381.6/2.30
    下载: 导出CSV

    表  2  W1水位工况下的能量转化率

    Table  2.   Energy conversion rate at W1 water level

    工况最大总波能
    (KEw+GPEw)(J)
    滑体势能
    (GPEs) (J)
    波浪总能量/滑体势能
    (KEw+GPEw/GPEs)
    K1V1W17.32238.643.07%
    K1V2W110.76364.882.95%
    K1V3W110.83455.812.38%
    K2V1W113.04510.062.56%
    K2V2W114.31759.511.88%
    K2V3W19.37940.571.00%
    K3V1W123.971179.352.03%
    K3V2W123.251608.391.45%
    K3V3W160.822083.752.92%
    下载: 导出CSV
  • [1] 黄波林,殷跃平,陈小婷,等. 地质灾害涌浪研究综述[J]. 水文地质工程地质,2014,41(1):112 − 118. [HUANG Bolin,YIN Yueping,CHEN Xiaoting,et al. A review on impulse wave generated by geohazards[J]. Hydrogeology & Engineering Geology,2014,41(1):112 − 118. (in Chinese with English abstract)
    [2] 汤明高,吴川,吴辉隆,等. 水库滑坡地下水动态响应规律及浸润线计算模型—以石榴树包滑坡为例[J]. 水文地质工程地质,2022,49(2):115 − 125. [TANG Minggao,WU Chuan,WU Huilong,et al. Dynamic response and phreatic line calculation model of groundwater in a reservoir landslide:exemplified by the Shiliushubao landslide[J]. Hydrogeology & Engineering Geology,2022,49(2):115 − 125. (in Chinese with English abstract)
    [3] 黄达,匡希彬,罗世林. 三峡库区藕塘滑坡变形特点及复活机制研究[J]. 水文地质工程地质,2019,46(5):127 − 135. [HUANG Da,KUANG Xibin,LUO Shilin. A study of the deformation characteristics and reactivation mechanism of the Outang landslide near the Three Gorges Reservoir of China[J]. Hydrogeology & Engineering Geology,2019,46(5):127 − 135. (in Chinese with English abstract)
    [4] 蒋权,陈希良,肖江剑,等. 云南黄坪库区滑坡运动及其失稳模式的离散元模拟[J]. 中国地质灾害与防治学报,2018,29(3):53 − 59. [JIANG Quan,CHEN Xiliang,XIAO Jiangjian,et al. Discrete element numerical simulation and analysis of Yunnan Huangping Reservoir Areas landslide and its failure mode[J]. The Chinese Journal of Geological Hazard and Control,2018,29(3):53 − 59. (in Chinese with English abstract)
    [5] FRITZ H M, MOHAMMED F, YOO J. Lituya Bay Landslide Impact Generated Mega-Tsunami 50th Anniversary[M]//Tsunami Science Four Years after the 2004 Indian Ocean Tsunami, 2009: 153 − 175.
    [6] 殷坤龙,杜娟,汪洋. 清江水布垭库区大堰塘滑坡涌浪分析[J]. 岩土力学,2008,29(12):3266 − 3270. [YIN Kunlong,DU Juan,WANG Yang. Analysis of surge triggered by Dayantang landslide in Shuibuya Reservoir of Qingjiang River[J]. Rock and Soil Mechanics,2008,29(12):3266 − 3270. (in Chinese with English abstract)
    [7] XIAO L L,WANG J J,WARD S N,et al. Numerical modeling of the June 24,2015,Hongyanzi landslide generated impulse waves in Three Gorges Reservoir,China[J]. Landslides,2018,15(12):2385 − 2398. doi:  10.1007/s10346-018-1057-2
    [8] 罗冠枝,高文伟,王国卫,等. 库岸斜坡失稳及其涌浪灾害风险分析[J]. 中国地质灾害与防治学报,2020,31(1):8 − 17. [LUO Guanzhi,GAO Wenwei,WANG Guowei,et al. Risk analysis of surge disaster and slope instability on reservoir bank[J]. The Chinese Journal of Geological Hazard and Control,2020,31(1):8 − 17. (in Chinese with English abstract)
    [9] 龙艳梅,宋章,王玉峰,等. 基于物理模型试验的碎屑流流态化运动特征分析[J]. 水文地质工程地质,2022,49(1):126 − 136. [LONG Yanmei,SONG Zhang,WANG Yufeng,et al. An analysis of flow-like motion of avalanches based on physical modeling experiments[J]. Hydrogeology & Engineering Geology,2022,49(1):126 − 136. (in Chinese with English abstract)
    [10] KELFOUN K,GIACHETTI T,LABAZUY P. Landslide-generated tsunamis at réunion island[J]. Journal of Geophysical Research,2010,115(F4):F04012.
    [11] LØVHOLT F,PEDERSEN G,HARBITZ C B,et al. On the characteristics of landslide tsunamis[J]. Philosophical Transactions Series A,Mathematical,Physical,and Engineering Sciences,2015,373(2053):20140376.
    [12] MA G F,KIRBY J T,HSU T J,et al. A two-layer granular landslide model for tsunami wave generation:theory and computation[J]. Ocean Modelling,2015,93:40 − 55. doi:  10.1016/j.ocemod.2015.07.012
    [13] 肖莉丽. 库岸滑坡涌浪数值模拟研究[D]. 武汉: 中国地质大学, 2015

    XIAO Lili. Numerical simulation of landslide generated waves in reservoir[D]. Wuhan: China University of Geosciences, 2015. (in Chinese with English abstract)
    [14] WANG J J,WARD S N,XIAO L L. Numerical modelling of rapid,flow-like landslides across 3-D terrains:a Tsunami Squares approach to El Picacho landslide,El Salvador,September 19,1982[J]. Geophysical Journal International,2015,201(3):1534 − 1544. doi:  10.1093/gji/ggv095
    [15] XIAO L L,WARD S N,WANG J J. Tsunami squares approach to landslide-generated waves:application to Gongjiafang landslide,Three Gorges Reservoir,China[J]. Pure and Applied Geophysics,2015,172(12):3639 − 3654. doi:  10.1007/s00024-015-1045-6
    [16] WANG J J,WARD S N,XIAO L L. Tsunami Squares modeling of landslide generated impulsive waves and its application to the 1792 Unzen-Mayuyama mega-slide in Japan[J]. Engineering Geology,2019,256:121 − 137. doi:  10.1016/j.enggeo.2019.04.020
    [17] 孙永福,黄波林,赵永波. 基于物理试验的海底滑坡涌浪研究[J]. 水文地质工程地质,2018,45(1):116 − 122. [SUN Yongfu,HUANG Bolin,ZHAO Yongbo. A study of the submarine landslide-induced impulse wave based on physical experiments[J]. Hydrogeology & Engineering Geology,2018,45(1):116 − 122. (in Chinese with English abstract)
    [18] FRITZ H M,HAGER W H,MINOR H E. Landslide generated impulse waves[J]. Experiments in Fluids,2003,35(6):505 − 519. doi:  10.1007/s00348-003-0659-0
    [19] ATAIE-ASHTIANI B,NIK-KHAH A. Impulsive waves caused by subaerial landslides[J]. Environmental Fluid Mechanics,2008,8(3):263 − 280. doi:  10.1007/s10652-008-9074-7
    [20] 殷坤龙,刘艺梁,汪洋,等. 三峡水库库岸滑坡涌浪物理模型试验[J]. 地球科学,2012,37(5):1067 − 1074. [YIN Kunlong,LIU Yiliang,WANG Yang,et al. Physical model experiments of landslide-induced surge in Three Gorges Reservoir[J]. Earth Science,2012,37(5):1067 − 1074. (in Chinese with English abstract)
    [21] 王梅力,祖福兴,王平义,等. 山区河道型水库滑坡涌浪首浪波能分析[J]. 水运工程,2020(4):79 − 83. [WANG Meili,ZU Fuxing,WANG Pingyi,et al. Study on head wave energy of landslide surge in mountainous river reservoir[J]. Port & Waterway Engineering,2020(4):79 − 83. (in Chinese with English abstract) doi:  10.3969/j.issn.1002-4972.2020.04.014
    [22] HELLER V,HAGER W H,MINOR H E. Scale effects in subaerial landslide generated impulse waves[J]. Experiments in Fluids,2008,44(5):691 − 703. doi:  10.1007/s00348-007-0427-7
    [23] FRITZ H M. Initial phase of landslide-generated impulse waves[D]. Zuerich: Eidgenoessische Technische Hochschule Zuerich, 2002.
    [24] NODA E. Water waves generated by landslides[J]. Journal of the Waterways,Harbors and Coastal Engineering Division,1970,96(4):835 − 855. doi:  10.1061/AWHCAR.0000045
    [25] LØVHOLT F,GLIMSDAL S,HARBITZ C B,et al. Tsunami hazard and exposure on the global scale[J]. Earth-Science Reviews,2012,110(1/2/3/4):58 − 73.
    [26] WARD S N. Landslide tsunami[J]. Journal of Geophysical Research:Solid Earth,2001,106(B6):11201 − 11215. doi:  10.1029/2000JB900450
    [27] WARD S N,DAY S. The 1958 lituya bay landslide and tsunami:A tsunami ball approach[J]. Journal of Earthquake and Tsunami,2010,4(4):285 − 319. doi:  10.1142/S1793431110000893
    [28] MOHAMMED F,FRITZ H M. Physical modeling of tsunamis generated by three-dimensional deformable granular landslides[J]. Journal of Geophysical Research:Oceans,2012,117(C11):3221 − 3221.
    [29] HELLER V. Landslide generated impulse waves: prediction of near field characteristics[D]. Southampton, South East England, UK: University of Southampton, 2008.
    [30] WATTS P. Tsunami features of solid block underwater landslides[J]. Journal of Waterway,Port,Coastal,and Ocean Engineering,2000,126(3):144 − 152.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  213
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-22
  • 录用日期:  2022-12-08
  • 修回日期:  2022-10-28

目录

    /

    返回文章
    返回