ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD 收录期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石川河富平地下水库渗透系数空间变异性研究

王继玲 周维博 孙梨梨 王奕勐

王继玲,周维博,孙梨梨,等. 石川河富平地下水库渗透系数空间变异性研究[J]. 水文地质工程地质,2022,50(0): 1-11 doi:  10.16030/j.cnki.issn.1000-3665.202206021
引用本文: 王继玲,周维博,孙梨梨,等. 石川河富平地下水库渗透系数空间变异性研究[J]. 水文地质工程地质,2022,50(0): 1-11 doi:  10.16030/j.cnki.issn.1000-3665.202206021
WANG Jiling, ZHOU Weibo, SUN Lili, et al. Study on the spatial vriability of hydraulic conductivity of underground reservoir in Fuping section of Shichuan River[J]. Hydrogeology & Engineering Geology, 2022, 50(0): 1-11 doi:  10.16030/j.cnki.issn.1000-3665.202206021
Citation: WANG Jiling, ZHOU Weibo, SUN Lili, et al. Study on the spatial vriability of hydraulic conductivity of underground reservoir in Fuping section of Shichuan River[J]. Hydrogeology & Engineering Geology, 2022, 50(0): 1-11 doi:  10.16030/j.cnki.issn.1000-3665.202206021

石川河富平地下水库渗透系数空间变异性研究

doi: 10.16030/j.cnki.issn.1000-3665.202206021
基金项目: 陕西省水利科技计划项目(2021slkj-16);中国地质调查局地质调查项目(12120113004800)
详细信息
    作者简介:

    王继玲(1997-),女,硕士研究生,主要从事水文地质方面的研究,E-mail:2304820352@qq.com

    通讯作者:

    周维博(1956-),男,博士,教授,博士生导师,主要从事水资源与水环境和地下水方面的研究。E-mail:zwbzyz823@163.com

  • 中图分类号: P641.2

Study on the spatial vriability of hydraulic conductivity of underground reservoir in Fuping section of Shichuan River

  • 摘要: 渗透系数的空间变异性研究是进行地下水库人工回灌的基础。为研究石川河富平地下水库渗透系数的空间变化规律,引入Box-Cox变换及Johnson变换对库区65组野外双环渗水试验及勘探孔数据进行预处理,并以变异函数为工具,运用传统统计学和地统计学方法分析渗透系数的空间变异性。结果表明:库区等效渗透系数变化范围为0.02~6.44 m/d,既服从对数正态分布也服从Box-Cox变换的正态分布。渗透系数空间相关程度中等,最优拟合模型为高斯模型。基于最优模型,渗透系数插值结果整体上呈现西北方向较大、东南方向较小的特点,在梅家坪镇及南社乡附近最大,范围为2.84~6.44 m/d,空间变异尺度小;在觅子乡、庄里镇附近变化明显,空间变异尺度大;在东上官乡南部最小,均小于0.2 m/d,变异尺度小。空间变异受地形、地貌、地层岩性分布、水文气象条件、试验点分布、人工取砂、机械碾压等因素的综合影响。回灌位置应选择在梅家坪镇等渗透系数大,空间变异尺度小及受人为扰动影响小的地段。研究结果可为地下水库建设提供理论参考。
  • 图  1  研究区范围及渗透系数点位分布图

    Figure  1.  Scope of the study area and the location distribution of hydraulic conductivity points

    图  2  渗透系数直方图与正态概率分布图

    Figure  2.  Hydraulic conductivity histogram and normal probability distribution

    图  3  渗透系数高斯模型拟合

    Figure  3.  Gaussian model fitting of hydraulic conductivity

    图  4  渗透系数等值线图

    Figure  4.  Contour plot of hydraulic conductivity

    图  5  渗透系数误差分析

    Figure  5.  Error analysis of hydraulic conductivity

    表  1  各点位岩层厚度及渗透系数

    Table  1.   Statistical results of rock thickness and hydraulic conductivity at each point

    编号岩层厚度/m等效渗透系数/(m·d-1编号岩层厚度/m等效渗透系数/(m·d-1编号岩层厚度/m等效渗透系数/(m·d-1
    S-141.501.20S-2338.500.151156.200.56
    S-246.001.26S-2436.000.341252.700.58
    S-339.105.68S-2524.900.161353.300.90
    S-447.200.93S-2614.800.021459.151.79
    S-554.101.45S-2717.000.221539.000.39
    S-654.700.62S-2823.500.371631.900.93
    S-744.001.26S-2921.000.111759.700.29
    S-855.100.48S-3020.200.141831.600.21
    S-954.400.44S-3115.000.171940.600.37
    S-1051.302.90S-3218.000.102057.500.32
    S-1152.801.24S-3336.000.092159.000.51
    S-1253.801.07S-3437.200.062256.040.36
    S-1353.903.08123.806.442356.040.40
    S-1444.300.10228.801.542465.200.14
    S-1552.702.03331.001.122563.800.11
    S-1653.002.09439.600.502615.100.03
    S-1746.102.34543.500.112726.300.02
    S-1838.305.92639.000.172836.900.05
    S-1938.800.08752.200.152948.100.02
    S-2042.501.46853.200.563039.500.03
    S-2144.000.28953.100.813141.900.02
    S-2232.500.681054.200.15
    下载: 导出CSV

    表  2  变换函数类型

    Table  2.   Transformation function type

    一般公式分布类型
    $Z=\alpha +\delta \mathrm{ln}\left(\dfrac{X-\zeta }{\epsilon }\right)=\alpha \ast +\delta \mathrm{ln}\left(X-\zeta \right),\quad X>\zeta$X服从Johnson SL分布(即对数分布)
    $Z=\alpha +\delta \mathrm{ln}\left(\dfrac{X-\zeta }{\zeta \text{+}\epsilon -X}\right),\quad \zeta <X<\zeta \text{+}\epsilon$X服从Johnson SB分布
    $Z = \alpha + \delta {\sinh ^{ - 1} }\left( {\dfrac{ {X - \zeta } }{\varepsilon } } \right) = \alpha + \delta \ln \left( {\dfrac{ {X - \zeta } }{\varepsilon } + \sqrt {1 + { {\left( {\dfrac{ {X - \zeta } }{\varepsilon } } \right)}^2} } } \right)$X服从Johnson SU分布
    下载: 导出CSV

    表  3  变异函数理论模型

    Table  3.   Theoretical model of variation function

    变异函数理论模型一般公式变程
    球状模型$\gamma (h) = \left\{ \begin{aligned} &0 &h= 0 \\ &{C_0} + C\left( \frac{3}{2}\frac{h}{a} - \frac{1}{2}\frac{ { {h^3} } }{ { {a^3} } } \right) & 0 < h \leqslant a \\ & {C_0} + C & h > a \end{aligned} \right.$a
    指数模型$\gamma \left( h \right) = {C_0} + C\left( {1 - {e^{ - \tfrac{h}{a} } } } \right)$3a
    高斯模型$\gamma \left( h \right) = {C_0} + C\left( {1 - {e^{ - \tfrac{ { {h^2} } }{ { {a^2} } } } } } \right)$$ \sqrt {3a} $
    注:C0为块金值;C表示空间变量最大的变异程度;C0+C为基台值;h为步长;a为变程,表示最大自相关距离,当距离大于a时,变量相互独立。
    下载: 导出CSV
  • [1] 姜秋香,付强,王子龙. 空间变异理论在土壤特性分析中的应用研究进展[J]. 水土保持研究,2008,15(1):250 − 253. [JIANG Qiuxiang,FU Qiang,WANG Zilong. Research progress of the spatial variability theory in application to soil characteristic analysis[J]. Research of Soil and Water Conservation,2008,15(1):250 − 253. (in Chinese with English abstract)
    [2] HATCH E Christie,FISHER T Andrew,RUEHL R Chris,et al. Spatial and temporal variations in streambed hydraulic conductivity quantified with time-series thermal methods[J]. Journal of Hydrology,2010,389(3/4):276 − 288.
    [3] ZHANG Nan,LI Lin,JIANG Hong,et al. Study on variation rule of permeability coefficient in unsaturated zone along the WeiHe River in the intertidal area[J]. IOP Conference Series Earth and Environmental Science,2018,208(1):71 − 78.
    [4] 李金荣,韩新正,万红友,等. 渗透系数的空间变异研究[J]. 中国农村水利水电,2011(2):11 − 13. [LI Jinrong,HAN Xinzheng,WAN Hongyou,et al. Research on the spatial variability of hydraulic conductivity[J]. China Rural Water and Hydropower,2011(2):11 − 13. (in Chinese with English abstract)
    [5] 王开丽,黄冠华. 二维强非均质含水层中渗透系数空间变异对污染物迁移的影响[J]. 水利学报,2010,41(4):437 − 445. [WANG Kaili,HUANG Guanhua. Effect of hydraulic conductivity on contaminant transport in highly heterogeneous two-dimensional aquifers[J]. Journal of Hydraulic Engineering,2010,41(4):437 − 445. (in Chinese with English abstract)
    [6] CHEN Xunhong,SONG Jinxi,WANG Wenke. Spatial variability of specific yield and vertical hydraulic conductivity in a highly permeable alluvial aquifer[J]. Journal of Hydrology,2010,388(3/4):379 − 388.
    [7] CHENG Cheng,SONG Jinxi,CHEN Xunhong,et al. Statistical distribution of streambed vertical hydraulic conductivity along the Platte River,Nebraska[J]. Water Resources Management,2011,25(1):265 − 285. doi:  10.1007/s11269-010-9698-5
    [8] 施小清,吴吉春,袁永生. 渗透系数空间变异性研究[J]. 水科学进展,2005,16(2):210 − 215. [SHI Xiaoqing,WU Jichun,YUAN Yongsheng. Study on the spatial variability of hydraulic conductivity[J]. Advances in Water Science,2005,16(2):210 − 215. (in Chinese with English abstract) doi:  10.3321/j.issn:1001-6791.2005.02.010
    [9] 陈宝辉,王文科,段磊,等. 巴音河下游河床渗透系数空间变异性研究[J]. 水利水电技术,2019,50(1):52 − 57. [CHEN Baohui,WANG Wenke,DUAN Lei,et al. Spatial variability of hydraulic conductivity of riverbed sediment in the lower reaches of Bayin River[J]. Water Resources and Hydropower Engineering,2019,50(1):52 − 57. (in Chinese with English abstract) doi:  10.13928/j.cnki.wrahe.2019.01.007
    [10] 沈鹏云. 渭河河床沉积物渗透系数空间变异性研究[D]. 西安: 西北大学, 2012

    SHEN Pengyun. Study on the spatial variability of hydraulic conductivity of riverbed sediment in the Weihe River[D]. Xi’an: Northwest University, 2012. (in Chinese with English abstract)
    [11] 米海存,Chen XH,何红曼,等. 渭河河漫滩沉积物渗透性研究[J]. 水文地质工程地质,2014,41(4):19 − 23. [MI Haicun,XH C,HE Hongman,et al. Determination of hydraulic conductivity of the floodplain in the Weihe River[J]. Hydrogeology & Engineering Geology,2014,41(4):19 − 23. (in Chinese with English abstract) doi:  10.16030/j.cnki.issn.1000-3665.2014.04.007
    [12] 葛佳亮,严婷,吕敬,等. 渭河临潼段漫滩沉积物渗透系数分析[J]. 水资源与水工程学报,2018,29(2):201 − 204. [GE Jialiang,YAN Ting,LV Jing,et al. Analysis of floodplain sediments saturated hydraulic conductivity in Lintong section of Weihe River[J]. Journal of Water Resources & Water Engineering,2018,29(2):201 − 204. (in Chinese with English abstract) doi:  10.11705/j.issn.1672-643X.2018.02.33
    [13] 吕敬,柯贤敏,张小筱,等. 泾阳南塬黄土边坡饱和渗透系数变异性分析[J]. 水土保持通报,2017,37(3):254 − 257. [LV Jing,KE Xianmin,ZHANG Xiaoxian,et al. Variability of saturated permeability coefficient of loess slopes in South Jingyang Tableland[J]. Bulletin of Soil and Water Conservation,2017,37(3):254 − 257. (in Chinese with English abstract) doi:  10.13961/j.cnki.stbctb.2017.03.043
    [14] 刘波,林晓宁,马红亮,等. 黄河三角洲沉积物及其渗透系数空间分布特征[J]. 人民黄河,2018,40(5):1 − 6. [LIU Bo,LIN Xiaoning,MA Hongliang,et al. Spatial distribution of particle size and hydraulic conductivity of shallow surface sediments in the Yellow River Delta[J]. Yellow River,2018,40(5):1 − 6. (in Chinese with English abstract)
    [15] 宋扬. 灞河橡胶坝库区沉积物渗透系数空间变异及河水——地下水交互作用研究[D]. 西安: 长安大学, 2017

    SONG Yang. Spatial variability of sediment permeability coefficient and river-groundwater interaction in Bahe rubber dam area[D]. Xi’an: Changan University, 2017. (in Chinese with English abstract)
    [16] 王超,束龙仓,鲁程鹏. 渗透系数空间变异性对低渗透地层中地下水溶质运移的影响[J]. 河海大学学报(自然科学版),2014,42(2):137 − 142. [WANG Chao,SHU Longcang,LU Chengpeng. Impacts of spatial variability of hydraulic conductivity on solute transport in groundwater of low-permeability stratum[J]. Journal of Hohai University (Natural Sciences),2014,42(2):137 − 142. (in Chinese with English abstract) doi:  10.3876/j.issn.1000-1980.2014.02.008
    [17] 何满潮,刘斌,姚磊华,等. 地下热水回灌过程中渗透系数研究[J]. 吉林大学学报(地球科学版),2002(4):374 − 377. [HE Manchao,LIU Bin,YAO Leihua. Study on hydraulic conductivity during geothermal reinjection[J]. Journal of Jilin University (Earth Science Edition),2002(4):374 − 377. (in Chinese with English abstract)
    [18] CUI Ruifei,ZHU Yaguang,ZHANG Huan,et al. BoxCox multi-output linear regression for 10.7 cm solar radio flux prediction[J]. Research in Astronomy and Astrophysics,2021,21(4):149 − 158.
    [19] 常浩浩,宋松柏,吴海江,等. 基于Johnson分布的年降水量频率分析[J]. 水力发电学报,2021,40(3):76 − 83. [CHANG Haohao,SONG Songbai,WU Haijiang,et al. Frequency analysis of annual precipitation based on Johnson distribution[J]. Journal of Hydroelectric Engineering,2021,40(3):76 − 83. (in Chinese with English abstract) doi:  10.11660/slfdxb.20210307
    [20] 蔡国涛,乔长录. 基于正态变换的玛纳斯河水文频率研究[J]. 人民黄河,2022,44(3):21 − 25. [CAI Guotao,QIAO Changlu. Study on hydrological frequency with Manas River based on normal transform[J]. Yellow River,2022,44(3):21 − 25. (in Chinese with English abstract) doi:  10.3969/j.issn.1000-1379.2022.03.005
    [21] 薛佩佩,文章,梁杏. 地质统计学在含水层参数空间变异研究中的应用进展与发展趋势[J]. 地质科技通报,2022,41(1):209 − 222. [XUE Peipei,WEN Zhang,LIANG Xing. Application and development trend of geostatistics in the research of spatial variation of aquifer parameters[J]. Bulletin of Geological Science and Technology,2022,41(1):209 − 222. (in Chinese with English abstract)
    [22] 荆永滨,王公忠,毕林. 矿山离散钻孔样品变异函数模型计算与拟合[J]. 矿冶工程,2017,37(4):19 − 22. [JING Yongbin,WANG Gongzhong,BI Lin. Calculating and fitting variogram models for dispersed mine drill samples[J]. Mining and Metallurgical Engineering,2017,37(4):19 − 22. (in Chinese with English abstract) doi:  10.3969/j.issn.0253-6099.2017.04.005
    [23] 王友年,李升,余斌. 阿克苏河流域渗透系数空间变异性分析[J]. 中国农村水利水电,2021(1):64 − 70. [WANG Younian,LI Sheng,YU Bin. Spatial variability analysis of permeability coefficient in Aksu River Basin[J]. China Rural Water and Hydropower,2021(1):64 − 70. (in Chinese with English abstract) doi:  10.3969/j.issn.1007-2284.2021.01.013
    [24] NALDER A Ian,WEIN W Ross. Spatial interpolation of climatic Normals:test of a new method in the Canadian boreal forest[J]. Agricultural and Forest Meteorology,1998,92(4):211 − 225. doi:  10.1016/S0168-1923(98)00102-6
    [25] 李海涛,邵泽东. 空间插值分析算法综述[J]. 计算机系统应用,2019,28(7):1 − 8. [LI Haitao,SHAO Zedong. Review of spatial interpolation analysis algorithm[J]. Computer Systems & Applications,2019,28(7):1 − 8. (in Chinese with English abstract) doi:  10.15888/j.cnki.csa.006988
    [26] 杨洁荣,宋向东,明喆. Johnson转换与Box-Cox转换相比的优越性[J]. 佳木斯大学学报(自然科学版),2010,28(3):449 − 452. [YANG Jierong,SONG Xiangdong,MING Zhe. The superiority of Johnson transformation to box-cox transformation[J]. Journal of Jiamusi University (Natural Science Edition),2010,28(3):449 − 452. (in Chinese with English abstract) doi:  10.3969/j.issn.1008-1402.2010.03.038
    [27] 郭志奇. 陕西省富平县石川河河道渗透性能分析[J]. 地下水,2021,43(6):82 − 85. [GUO Zhiqi. Analysis of the infiltration performance of the Shichuan River in Fuping County,Shaanxi Province[J]. Ground Water,2021,43(6):82 − 85. (in Chinese)
    [28] 刘卫岗. 陕西省石川河流域地下水调蓄研究报告[R]. 西安: 陕西省工程勘察研究院, 2015

    LIU Weigang. Study on groundwater storage in Shichuan River Basin of Shaanxi Province[R]. Xi’an: Shaanxi Engineering Investigation and Research Institute, 2015. (in Chinese)
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  63
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-15
  • 修回日期:  2022-07-18

目录

    /

    返回文章
    返回