ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD 收录期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

泥炭质土K0固结不同开挖路径应力应变关系研究

阮永芬 潘继强 乔文件 闫明 郭宇航

阮永芬,潘继强,乔文件,等. 泥炭质土K0固结不同开挖路径应力应变关系研究[J]. 水文地质工程地质,2023,50(0): 1-11 doi:  10.16030/j.cnki.issn.1000-3665.202206007
引用本文: 阮永芬,潘继强,乔文件,等. 泥炭质土K0固结不同开挖路径应力应变关系研究[J]. 水文地质工程地质,2023,50(0): 1-11 doi:  10.16030/j.cnki.issn.1000-3665.202206007
RUAN Yongfen, PAN Jiqiang, QIAO Wenjian, et al. An experimental study of the stress-strain relationship of different excavation paths for soft soil K0 consolidation[J]. Hydrogeology & Engineering Geology, 2023, 50(0): 1-11 doi:  10.16030/j.cnki.issn.1000-3665.202206007
Citation: RUAN Yongfen, PAN Jiqiang, QIAO Wenjian, et al. An experimental study of the stress-strain relationship of different excavation paths for soft soil K0 consolidation[J]. Hydrogeology & Engineering Geology, 2023, 50(0): 1-11 doi:  10.16030/j.cnki.issn.1000-3665.202206007

泥炭质土K0固结不同开挖路径应力应变关系研究

doi: 10.16030/j.cnki.issn.1000-3665.202206007
基金项目: 云南省重点研发计划基金项目(2018BC008)
详细信息
    作者简介:

    阮永芬(1964-),女,博士,教授,主要从事岩土工程研究。E-mail:rryy64@163.com

  • 中图分类号: TU411

An experimental study of the stress-strain relationship of different excavation paths for soft soil K0 consolidation

  • 摘要: 基坑开挖过程中不同部位的土体会因不同的卸荷力学行为而表现出动态的破坏特性。为研究基坑土体开挖过程中复杂的卸荷应力路径,利用TSZ-1S应力控制式三轴仪分别对湖相沉积的泥炭质土进行固结不排水及K0固结下的加、卸荷试验,并按侧向、轴向、轴侧向同时卸荷等不同卸荷条件制定试验方案,模拟基坑开挖过程中不同部位土体卸荷路径下的应力-应变曲线、卸荷剪切破坏时的强度及初始切线模量等的变化规律。试验结果表明:土体的应力应变特性与应力路径密切相关,各路径下应力-应变曲线都近似呈双曲线型;卸荷剪切破坏时强度明显低于加荷破坏。对不同卸荷路径下初始切线模量Ei研究发现,Ei受侧向卸荷影响较大,卸荷后Ei有所提高,轴向卸荷对其影响较小。对各应力-应变曲线进行归一化处理,构建了考虑不同归一化因子的归一化方程,以该方程为基础对不同应力路径下的泥炭质土进行归一化处理,并对结果进行了验证,效果良好。本研究可为泥炭质土场地上基坑在不同卸荷路径下的变形参数和本构关系的研究提供参考。
  • 图  1  试验图片

    Figure  1.  Test pictures

    图  2  各组试验应力应变曲线

    Figure  2.  Stress-strain curve of each group test

    图  3  同一围压下各组试验应力应变曲线

    Figure  3.  Stress-strain curve of each test group under the same circumferential pressure

    图  4  不同路径下初始切线模量

    Figure  4.  Initial tangent modulus under different paths

    图  5  ①、②组试验Ei、(σ1σ3)uσ3变化关系

    Figure  5.  Relationship of Ei, (σ1σ3)u and σ3 in groups ① and ② tests

    图  6  昆明泥炭质土应力应变归一化曲线

    注:图中Y=$ {{{\varepsilon _1}{E_i}} \mathord{\left/ {\vphantom {{{\varepsilon _1}{E_i}} {\left( {q - {q_c}} \right)}}} \right. } {\left( {q - {q_c}} \right)}} $,X=εa

    Figure  6.  Normalized stress-strain curve of the Kunming peaty soil

    图  7  昆明泥炭质土应力应变预测曲线

    Figure  7.  Predicted stress-strain curve of the Kunming peaty soil

    表  1  不同卸荷路径下三轴剪切试验方案

    Table  1.   Triaxial shear test schemes under different unloading paths

    试验分组σ3/kPa固结方式卸荷路径剪切路径
    100等向固结σ3不变σ1
    逐渐增大
    150
    225
    100K0固结
    150
    225
    100K0固结σ3每级减10 kPa至破坏σ1不变σ3
    逐渐减小
    150σ3每级减15 kPa至破坏
    225σ3每级减20 kPa至破坏
    100K0固结σ3=100→90→80→70→
    60→80→100
    σ3不变σ1
    逐渐增大
    150σ3=150→135→120→
    105→90→120→150
    225σ3=225→205→185→
    165→145→185→225
    100K0固结每级σ3变化与④组一致,σ3减小时沿K0线减小σ1,后恢复至初始状态
    150
    225
    100K0固结σ1=133→128→123→
    118→113→123→133
    150σ1=200→192→185→
    177→170→185→200
    225σ1=300→290→280→
    270→260→280→300
    注:σ1、σ3分别表示大小主应力。
    下载: 导出CSV

    表  2  Eiσm拟合表达式及参数值

    Table  2.   Ei and σm fitting expressions and parameter values

    试验组σm/kPaEi/MPaR2表达式
    10033.840.998$ {E_i} = 0.1991{\sigma _m} + 15.05 $
    15044.27
    22557.84
    11131.910.958$ {E_i} = 0.2655{\sigma _m} - 0.2671 $
    16739.60
    25067.98
    11123.020.986$ {E_i} = 0.0614{\sigma _m}{\text{ + }}16.55 $
    16727.37
    25031.68
    11162.770.945$ {E_i} = 0.3576{\sigma _m}{\text{ + }}18.20 $
    16769.69
    250110.87
    11157.010.947$ {E_i} = 0.2184{\sigma _m}{\text{ + }}35.25 $
    16775.76
    25088.18
    11130.620.999$ {E_i} = 0.2425{\sigma _m}{\text{ + }}3.647 $
    16743.98
    25064.31
    下载: 导出CSV
  • [1] LAMBE W T. Stress path method[J]. Journal of the Soil Mechanics and Foundations Division,1967,93(6):309 − 331. doi:  10.1061/JSFEAQ.0001058
    [2] 陈善雄,凌平平,何世秀,等. 粉质黏土卸荷变形特性试验研究[J]. 岩土力学,2007,28(12):2534 − 2538. [CHEN Shanxiong,LING Pingping,HE Shixiu,et al. Experimental study on deformation behavior of silty clay under unloading[J]. Rock and Soil Mechanics,2007,28(12):2534 − 2538. (in Chinese with English abstract) doi:  10.3969/j.issn.1000-7598.2007.12.009
    [3] 李露. 基于不同应力路径及卸荷速率影响下结构性黏土的力学特性试验研究[D]. 武汉: 武汉轻工大学, 2022

    LI Lu. Experimental study of mechanical properties of structured clay under different stress paths and unloading rates[D]. Wuhan: Wuhan Polytechnic University, 2022. (in Chinese with English abstract)
    [4] HSIEH P G, OU C Y. Analysis of nonlinear stress and strain in clay under the undrained condition[J]. Journal of Mechanics, 2011, 27(2): 201 − 213.
    [5] 李德宁, 楼晓明, 杨敏. 上海地区基坑开挖卸荷土体回弹变形试验研究[J]. 岩土力学, 2011, 32(增刊2): 244 − 249

    LI Dening, LOU Xiaoming, YANG Min. Experimental researches on unloading resilient deformation properties during excavations in Shanghai area[J]. Rock and Soil Mechanics, 2011, 32(Sup 2): 244 − 249. (in Chinese with English abstract)
    [6] 张玉, 邵生俊. 平面应变加、卸荷条件下黄土的非线性变形特性的研究[J]. 岩土工程学报, 2015, 37(增刊1): 185-190

    ZHANG Yu, SHAO Shengjun. Non-linear deformation behaviors of loess under plane strain state of vertical loading and lateral unloading[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(Sup 1): 185-190. (in Chinese with English abstract)
    [7] 杨爱武,杨少坤,张振东. 基于不同卸荷速率与路径影响下吹填土力学特性研究[J]. 岩土力学,2020,41(9):2891 − 2900. [YANG Aiwu,YANG Shaokun,ZHANG Zhendong. Experimental study of mechanical properties of dredger fill under different unloading rates and stress paths[J]. Rock and Soil Mechanics,2020,41(9):2891 − 2900. (in Chinese with English abstract) doi:  10.16285/j.rsm.2019.1992
    [8] 李新明,孔令伟,郭爱国. 考虑卸荷速率的K0固结膨胀土应力-应变行为[J]. 岩土力学,2019,40(4):1299 − 1306. [LI Xinming,KONG Lingwei,GUO Aiguo. Stress-strain behavior of expansive soil under K0 condition with different unloading rates[J]. Rock and Soil Mechanics,2019,40(4):1299 − 1306. (in Chinese with English abstract)
    [9] 梅国雄,陈浩,卢廷浩,等. 坑侧土体卸荷的侧向应力-应变关系研究[J]. 岩石力学与工程学报,2010,29(增刊1):3108 − 3112. [MEI Guoxiong,CHEN Hao,LU Tinghao,et al. Research on lateral stress-strain relation on side of foundation pit with lateral unloading[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(Sup1):3108 − 3112. (in Chinese with English abstract)
    [10] 陈志波,钟理峰,蔡廉锦,等. 基坑开挖过程坑侧土体应力路径试验研究[J]. 防灾减灾工程学报,2016,36(6):943 − 949. [CHEN Zhibo,ZHONG Lifeng,CAI Lianjin,et al. Stress pathtriaxial tests on the lateral soil of foundation pit during excavation process[J]. Journal of Disaster Prevention and Mitigation Engineering,2016,36(6):943 − 949. (in Chinese with English abstract) doi:  10.13409/j.cnki.jdpme.2016.06.014
    [11] 陈立国,吴昊天,陈晓斌,等. 超载预压处理软土的次固结特征及沉降计算[J]. 水文地质工程地质,2021,48(1):138 − 145. [CHEN Liguo,WU Haotian,CHEN Xiaobin,et al. Secondary consolidation characteristics and settlement calculation of soft soil treated by overload preloading[J]. Hydrogeology & Engineering Geology,2021,48(1):138 − 145. (in Chinese with English abstract) doi:  10.16030/j.cnki.issn.1000-3665.202009016
    [12] 孟凡丽,娄桢桢,葛威. 长期循环荷载下卸荷粉土动力特性的试验研究[J]. 岩土力学,2022,43(增刊1):383 − 388. [MENG Fanli,LOU Zhenzhen,GE Wei. Experimental study on dynamic characters of unloading silt under long-term cyclic loading[J]. Rock and Soil Mechanics,2022,43(Sup1):383 − 388. (in Chinese with English abstract) doi:  10.16285/j.rsm.2021.0106
    [13] BALASUBRAMANIAM A S,CHAUDRY A R. Deformation and strength characteristics of soft bangkok clay[J]. Journal of the Geotechnical Engineering Division,1978,104(9):1153 − 1167. doi:  10.1061/AJGEB6.0000685
    [14] 李作勤. 粘土归一化性状的分析[J]. 岩土工程学报,1987,9(5):67 − 75. [LI Zuoqin. Analysis of normalized properties of clay[J]. Chinese Journal of Geotechnical Engineering,1987,9(5):67 − 75. (in Chinese with English abstract) doi:  10.3321/j.issn:1000-4548.1987.05.008
    [15] 曾国熙. 正常固结黏土不排水剪切的归一化性状[C]//软土地基学术讨论会论文集. 北京: 水利出版社, 1980, 13 − 26

    ZENG Guoxi. Normalized properties of normally consolidated clay Soils in undrained shear[C]// Proceedings of the Symposium on Soft Ground Foundation. Beijing: Water Resources Press, 1980, 13 − 26. (in Chinese with English abstract)
    [16] 余志华,桂跃,付坚,等. 轴向卸荷条件下泥炭质土回弹变形试验研究[J]. 水文地质工程地质,2015,42(5):107 − 114. [YU Zhihua,GUI Yue,FU Jian,et al. An experimental study of the rebound deformation characteristics and mechanism of peaty soil under unloading[J]. Hydrogeology & Engineering Geology,2015,42(5):107 − 114. (in Chinese with English abstract) doi:  10.16030/j.cnki.issn.1000-3665.2015.05.18
    [17] 吴昳,朱俊高,黄浩然,等. 不同密度粉质粘土K0固结侧向卸荷三轴试验研究[J]. 河北工程大学学报(自然科学版),2022,39(3):49 − 55. [WU Yi,ZHU Jungao,HUANG Haoran,et al. Triaxial test study on K0 consolidation of different density silty clays with lateral unloading[J]. Journal of Hebei University of Engineering (Natural Science Edition),2022,39(3):49 − 55. (in Chinese with English abstract) doi:  10.3969/j.issn.1673-9469.2022.03.008
    [18] 周洪福,冯治国,石胜伟,等. 川藏铁路某特大桥成都侧岸坡工程地质特征及稳定性评价[J]. 水文地质工程地质,2021,48(5):112 − 119. [ZHOU Hongfu,FENG Zhiguo,SHI Shengwei,et al. Slope engineering geology characteristics and stability evaluationof a grand bridge to Chengdu bank on the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology,2021,48(5):112 − 119. (in Chinese with English abstract) doi:  10.16030/j.cnki.issn.1000-3665.202103076
    [19] 中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [20] 苟富刚,龚绪龙,陆徐荣,等. 有机质对海相软土物理力学特性的影响效应分析[J]. 水文地质工程地质,2022,49(5):195 − 203. [GOU Fugang,GONG Xulong,LU Xurong,et al. Effect of organic matter content on physical-mechanical properties of sea soft soil[J]. Hydrogeology & Engineering Geology,2022,49(5):195 − 203. (in Chinese with English abstract) doi:  10.16030/j.cnki.issn.1000-3665.202109033
    [21] 刘熙媛. 基坑开挖过程的试验与数值模拟及土的微观结构研究[D]. 天津: 天津大学, 2004

    LIU Xiyuan. Experimental and numerical simulation of excavation process and microstructure study[D]. Tianjin: Tianjin University, 2004. (in Chinese with English abstract)
    [22] 黄浩然,朱俊高,秦秀娟,等. 软土等向固结与K0固结条件下的三轴试验研究[J]. 防灾减灾工程学报,2012,32(5):546 − 551. [HUANG Haoran,ZHU Jungao,QIN Xiujuan,et al. Triaxial test study on soft soil under isotropic consolidation and K0 consolidation conditions[J]. Journal of Disaster Prevention and Mitigation Engineering,2012,32(5):546 − 551. (in Chinese with English abstract)
    [23] KONDNER R L. Hyperbolic stress-strain response:cohesive soils[J]. Journal of the Soil Mechanics and Foundations Division,1963,89(1):115 − 143. doi:  10.1061/JSFEAQ.0000479
    [24] 蒋海飞,刘东燕,黄伟,等. 高围压下不同孔隙水压作用时岩石蠕变特性及改进西原模型[J]. 岩土工程学报,2014,36(3):443 − 451. [JIANG Haifei,LIU Dongyan,HUANG Wei,et al. Creep properties of rock under high confining pressure and different pore water pressures and a modified Nishihara model[J]. Chinese Journal of Geotechnical Engineering,2014,36(3):443 − 451. (in Chinese with English abstract)
    [25] 张挺, 彭世龙, 曹广勇, 等. 膨胀土侧向卸荷试验研究及归一化特性分析[J/OL]. 水利水电技术(中英文). (2022-08-22) [2022-10-01]. http://kns.cnki.net/kcms/detail/10.1746.TV.20220819.1702.002.html

    ZHANG Ting, PENG Shilong, CAO Guangyong, et al. Experimental study on lateral unloading of expansive soil and analysis of normalized characteristics[J/OL]. Water Resources and Hydropower Engineering. (2022-08-22) [2022-10-01]. (in Chinese with English abstract)
    [26] 郭小帅. 基坑开挖中土体侧向卸荷特性研究[D]. 北京: 北京交通大学, 2012

    GUO Xiaoshuai. Research on the lateral unloading behavior of soils in deep excavation[D]. Beijing: Beijing Jiaotong University, 2012. (in Chinese with English abstract)
    [27] 周秋娟,陈晓平. 侧向卸荷条件下软土典型力学特性试验研究[J]. 岩石力学与工程学报,2009,28(11):2215 − 2221. [ZHOU Qiujuan,CHEN Xiaoping. Test research on typical mechanical characteristics of soft clay under lateral unloading condition[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(11):2215 − 2221. (in Chinese with English abstract)
    [28] 王大雁,马巍,常小晓,等. 深部人工冻土在小应变条件下的刚度特性[J]. 岩土力学,2006,27(9):1447 − 1451. [WANG Dayan,MA Wei,CHANG Xiaoxiao,et al. Small-strain stiffness properties of frozen soils in deep alluvium[J]. Rock and Soil Mechanics,2006,27(9):1447 − 1451. (in Chinese with English abstract) doi:  10.16285/j.rsm.2006.09.003
    [29] VARDANEGA P J,BOLTON M D. Stiffness of clays and silts:Normalizing shear modulus and shear strain[J]. Journal of Geotechnical and Geoenvironmental Engineering,2013,139(9):1575 − 1589. doi:  10.1061/(ASCE)GT.1943-5606.0000887
    [30] 谢飞. 基于结构性力学参数的黄土归一化性状研究: 以延安地区马兰黄土为例[D]. 西安: 长安大学, 2021

    XIE Fei. Research on the normalized properties of loess based on structural parameters— A case of Malan loess in Yan’an area[D]. Xi'an: Chang’an University, 2021. (in Chinese with English abstract)
    [31] 李作勤. 粘土归一化性状的分析[J]. 岩土工程学报,1987,9(5):67 − 75. [LI Zuoqin. Analysis of normalized properties of clay[J]. Chinese Journal of Geotechnical Engineering,1987,9(5):67 − 75. (in Chinese with English abstract) doi:  10.3321/j.issn:1000-4548.1987.05.008
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  58
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-07
  • 录用日期:  2022-10-25
  • 修回日期:  2022-07-24

目录

    /

    返回文章
    返回