ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD 收录期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

贵州省鸡场滑坡地下水化学特征反映的水-岩(土)作用

刘建强 许强 郑光 陈达 王卓 蒋金晶

刘建强,许强,郑光,等. 贵州省鸡场滑坡地下水化学特征反映的水-岩(土)作用[J]. 水文地质工程地质,2022,50(0): 1-9 doi:  10.16030/j.cnki.issn.1000-3665.202203077
引用本文: 刘建强,许强,郑光,等. 贵州省鸡场滑坡地下水化学特征反映的水-岩(土)作用[J]. 水文地质工程地质,2022,50(0): 1-9 doi:  10.16030/j.cnki.issn.1000-3665.202203077
LIU Jianqiang, XU Qiang, ZHENG Guang, et al. Water-rock /soil interaction reflected by the chemical characteristics of groundwater of Jichang landslide in Guizhou Province[J]. Hydrogeology & Engineering Geology, 2022, 50(0): 1-9 doi:  10.16030/j.cnki.issn.1000-3665.202203077
Citation: LIU Jianqiang, XU Qiang, ZHENG Guang, et al. Water-rock /soil interaction reflected by the chemical characteristics of groundwater of Jichang landslide in Guizhou Province[J]. Hydrogeology & Engineering Geology, 2022, 50(0): 1-9 doi:  10.16030/j.cnki.issn.1000-3665.202203077

贵州省鸡场滑坡地下水化学特征反映的水-岩(土)作用

doi: 10.16030/j.cnki.issn.1000-3665.202203077
基金项目: 国家自然科学基金重点项目(41630640)
详细信息
    作者简介:

    刘建强(1997-),男,硕士研究生,主要从事地质灾害机理及防治方面研究。E-mail:qiangcdut@qq.com

    通讯作者:

    许强(1968-),男,博士,教授,博士生导师,主要从事地质灾害预测评价及防治处理方面的教学与研究工作。E-mail:xq@cdut.edu.cn

Water-rock /soil interaction reflected by the chemical characteristics of groundwater of Jichang landslide in Guizhou Province

  • 摘要: 滑坡体水-岩(土)作用是一种复杂的物理化学综合作用,影响坡体的稳定性,但目前水-岩(土)相互作用对于地质灾害的发生方面的影响研究仍较为薄弱。以贵州省鸡场滑坡为研究对象,分析滑坡区岩土体矿物组成和化学成分特征,结合区域内基岩裂隙水、大气降水的成分变化规律,利用主成分分析方法,研究鸡场滑坡水-岩(土)作用过程,并分析水岩演化作用对滑坡稳定性的影响。结果表明:(1)滑体内玄武岩的风化过程是一种机械破碎-矿物蚀变耦合的水-(岩)相互作用,发生在“微观-细观-宏观”三种尺度上;(2)选取前三个因子Z1Z2Z3(分别占总方差的49.365%、27.135%、15.092%)分析地下水的化学特征,主因子Z1反映了玄武岩原生矿物的溶蚀作用对地下水化学成分的控制作用,Z2反映了地下水的蒸发作用与SiO2溶解度随pH变化的矿物沉淀作用,主因子Z3反映了地下水与岩(土)体间存在离子交换作用且主参与离子为Mg2+和K+;(3)水岩作用产物主要为伊利石、蒙皂石、绿泥石等黏土矿物,使得岩体结构面内黏土矿物含量增加,岩体劣化损伤,对滑带的形成及滑坡的解体产生重要影响。由此研究说明滑坡地下水与岩土体相互作用的主要过程能被主成分分析结果充分反映。
  • 图  1  鸡场滑坡区附近地质图

    1—乡镇;2—鸡场滑坡;3—河流;4—滑坡堆积物;5~8—三叠系中~下统嘉陵江组第四、三、二、一段;9~12—三叠系下统飞仙关组第四、三、二、一段;13~15—二叠系上统宣威组第三、二、一段;16~17—二叠系中上统峨眉山玄武岩组第二、一段;18~19—二叠系中统茅口组第二、一段;20—二叠系中统栖霞第二段

    Figure  1.  Geological map of the investigated area showing the outline of Jichang landslide

    图  2  鸡场滑坡平剖面示意图

    1—二叠系宜威组第二段;2—二叠系宜威组第一段;3—二叠系峨眉山武岩组第二段;4—粉砂岩;5—泥质粉砂岩;6—粘土岩;7—豆粒含铁质粘土岩;8—杏仁状玄武岩;9—残留的强风化玄武岩层—10—碎块石堆积体;11—原地面线;12—滑面

    Figure  2.  Plan and section diagram of Jichang landslide

    图  3  宏观-细观-微观尺度下的鸡场滑坡区玄武岩结构特征

    Figure  3.  Structural characteristics of basalt in Jichang landslide area under macroscopic, microscopic and microscopic scales

    (a)Rock fragmentation, (b) macroscopic scale, (c) mesoscopic scale, (d) microscopic scale

    图  4  鸡场滑坡3D全貌影像、样点位置(a)、区域内裂隙水(b)

    Figure  4.  The 3D full-view image of the Jichang landslide and the location of the sampling point (a)、The fissure water in the area (b)

    图  5  玄武岩岩块薄片鉴定图

    Figure  5.  Thin section analysis of basalt

    表  1  鸡场滑坡内岩土体X-矿物衍射分析结果

    Table  1.   Analysis results of X-mineral diffraction of rock and soil mass in Jichang landslide

    样品编号R1/%R2/%R3/%R4/%R5/%
    辉石9.620.310.431.2
    石英9.32.63.216.73.4
    钾长石2.72.63.41.82.5
    斜长石16.247.241.08.831.8
    磷灰石1.82.42.23.02.0
    钛铁矿3.63.34.15.03.2
    磁铁矿5.71.16.21.3
    褐铁矿3.52.51.310.79.1
    伊利石9.50.912.73.20.8
    蒙皂石32.32.713.533.74.2
    绿泥石5.714.32.015.811.8
    下载: 导出CSV

    表  2  鸡场滑坡内岩土体元素分析结果

    Table  2.   Analysis results of rock and soil elements in Jichang landslide

    样品编号R1/%R2/%R3/%R4/%R5/%
    Na2O0.162.770.891.17
    MgO3.234.473.251.93.67
    Al2O314.7113.5815.1917.7913.68
    SiO243.7944.4647.8736.8944.96
    P2O50.7510.921.220.82
    SO31.631.451.170.371.66
    K2O3.660.734.852.082.07
    CaO3.375.923.10.548.03
    TiO22.152.112.443.622.51
    V2O50.090.090.060.130.09
    Cr2O30.010.020.010.04
    MnO0.260.240.080.240.3
    FeO5.5510.994.513.7112.41
    Fe2O313.888.4910.83225.88
    LOI6.743.694.869.492.71
    下载: 导出CSV

    表  3  贵州省鸡场滑坡地下水化学成分

    Table  3.   Major ions of groundwater in the Jichang landslide

    样品编号SiO2Mg2+Ca2+Na+K+Cl${\rm{SO}}_4^{2- }$$ {\rm{HCO}}_3^-$TDSpH
    /(mg·L−1
    雨水11.010.782.860.100.161.3410.0810.316
    雨水21.282.700.101.110.6810.0810.444.9
    试样333.530.962.701.061.230.230.8516.3715.216.9
    试样422.531.596.611.280.240.41.1227.7125.736.8
    试样517.531.275.161.690.150.235.1121.4126.046.6
    试样618.531.366.351.440.133.5725.1927.777.1
    试样719.871.245.870.580.500.384.8725.1922.516.4
    试样821.201.186.350.960.180.365.5625.1929.086.8
    试样918.871.266.030.960.270.426.3525.1928.396.6
    试样103.287.941.640.140.246.7931.4931.926.9
    试样1110.881.5515.873.850.380.838.2162.9763.917.1
    注:(1)雨水1与雨水2均为8月3日在滑坡附近所接雨水,其余试样为滑坡体上基岩裂隙水;(2)滑坡体中基岩裂隙水取样时间均为8月4日,取样点如图3(a)中所示。
    下载: 导出CSV

    表  4  鸡场滑坡地下水化学成分间的相关系数矩阵

    Table  4.   Correlation matrices of the major ions of groundwater in the Jichang landslide

    因子SiO2Mg2+Ca2+Na+K+Cl${\rm{SO} }_4^{2- } $$ {\rm{HCO} }_3^- $
    SiO210.624−0.0830.0860.181−0.6130.0190.024
    Mg2+10.3900.419−0.356−0.1260.2550.429
    Ca2+10.915−0.3470.0370.7590.992
    Na+1−0.244−0.1160.6830.933
    K+10.017−0.465−0.282
    Cl1−0.288−0.027
    ${\rm{SO} }_4^{2- } $10.756
    $ {\rm{HCO} }_3^- $1
    下载: 导出CSV

    表  5  鸡场滑坡地下水化学成分主成分分析结果

    Table  5.   Results of the principal component analysis ofgroundwater in the Touzhai landslide

    主因子Z1Z2Z3
    SiO20.1380.9600.039
    Mg2+0.5610.514−0.422
    Ca2+0.947−0.2410.145
    Na+0.920−0.0590.245
    K+−0.4720.1690.799
    Cl−0.171−0.743−0.167
    ${\rm{SO} }_4^{2- } $0.842−0.0570.030
    ${\rm{HCO} }_3^- $0.955−0.1440.202
    特征值3.9491.8511.226
    方差贡献率/%49.36527.13515.092
    累积贡献率/%49.35676.591.592
    下载: 导出CSV
  • [1] 徐则民,黄润秋,唐正光. 硅酸盐矿物溶解动力学及其对滑坡研究的意义[J]. 岩石力学与工程学报,2005,24(9):1479 − 1491. [XU Zemin,HUANG Runqiu,TANG Zhengguang. Kinetics of silicate mineral dissolution and its implications for landslide studies[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(9):1479 − 1491. (in Chinese with English abstract) doi:  10.3321/j.issn:1000-6915.2005.09.004
    [2] LASAGA A C. Chemical kinetics of water-rock interactions[J]. Journal of Geophysical Research:Solid Earth,1984,89(B6):4009 − 4025. doi:  10.1029/JB089iB06p04009
    [3] SHUZUI Haruo. Process of slip-surface development and formation of slip-surface clay in landslides in Tertiary volcanic rocks,Japan[J]. Engineering Geology,2001,61(4):199 − 220. doi:  10.1016/S0013-7952(01)00025-4
    [4] WEN B P,AYDIN A. Mechanism of a rainfall-induced slide-debris flow:constraints from microstructure of its slip zone[J]. Engineering Geology,2005,78(1/2):69 − 88.
    [5] 易连兴. 西南岩溶山区复合水动力场滑坡影响模式:以关岭县大寨滑坡为例[J]. 水文地质工程地质,2020,47(4):43 − 50. [YI Lianxing. Impact model of landslide with complex hydrodynamic field in Karst mountain areas of southwest China:a case study of the Dazhai landslide in Guanling County[J]. Hydrogeology & Engineering Geology,2020,47(4):43 − 50. (in Chinese with English abstract)
    [6] 严春杰, 唐辉明, 陈洁渝, 等. 三峡库区典型滑坡滑带土微结构和物质组分研究[J]. 岩土力学, 2002, 23(增刊1): 23 − 26

    YAN Chunjie, TANG Huiming, CHEN Jieyu, et al. Studies of soil microstructures and compositions of slipping zone in reservior district of Three Gorges Profect[J]. Rock and Soil Mechanics, 2002, 23(Sup 1): 23 − 26. (in Chinese with English abstract)
    [7] 江洎洧,项伟,曾雯,等. 三峡库区黄土坡临江滑坡体水岩(土)相互作用机理[J]. 岩土工程学报,2012,34(7):1209 − 1216. [JIANG Jiwei,XIANG Wei,ZENG Wen,et al. Water-rock(soil) interaction mechanism of Huangtupo riverside landslide in Three Gorges Reservoir[J]. Chinese Journal of Geotechnical Engineering,2012,34(7):1209 − 1216. (in Chinese with English abstract)
    [8] 周翠英,邓毅梅,谭祥韶,等. 软岩在饱水过程中水溶液化学成分变化规律研究[J]. 岩石力学与工程学报,2004,23(22):3813 − 3817. [ZHOU Cuiying,DENG Yimei,TAN Xiangshao,et al. Testing study on variation regularities of solution components in saturation of soft rocks[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(22):3813 − 3817. (in Chinese with English abstract) doi:  10.3321/j.issn:1000-6915.2004.22.015
    [9] 孙德安,李培,高游,等. 红黏土浸水变形特性试验研究[J]. 水文地质工程地质,2015,42(5):74 − 78. [SUN Dean,Li Pei,Gao You,et al. An experimental study of deformation characteristics of lateritic clay due to wetting[J]. Hydrogeology & Engineering Geology,2015,42(5):74 − 78. (in Chinese with English abstract)
    [10] 刘立才,郑凡东,李炳华,等. 南水北调水源在密怀顺水源地回灌的地下水水质变化试验[J]. 水文地质工程地质,2015,42(4):18 − 22. [LIU Licai,ZHENG Fandong,LI Binghua,et al. Experiment of groundwater quality change for simulating the South-to-North water into the Mihuaishun aquifer[J]. Hydrogeology & Engineering Geology,2015,42(4):18 − 22. (in Chinese with English abstract)
    [11] 郑光,许强,刘秀伟,等. 2019年7月23日贵州水城县鸡场镇滑坡-碎屑流特征与成因机理研究[J]. 工程地质学报,2020,28(3):541 − 556. [ZHENG Guang,XU Qiang,LIU Xiuwei,et al. The Jichang landslide on July 23,2019 in Shuicheng,Guizhou:characteristics and failure mechanism[J]. Journal of Engineering Geology,2020,28(3):541 − 556. (in Chinese with English abstract)
    [12] 王志兵,申林方,徐则民. 头寨滑坡地下水化学特征及其反映的水-岩(土)相互作用[J]. 水文地质工程地质,2016,43(1):111 − 116. [WANG Zhibing,SHEN Linfang,XU Zemin. Hydrochemical characteristics and their implication for the water-rock/soil interaction in the Touzhai landslide[J]. Hydrogeology & Engineering Geology,2016,43(1):111 − 116. (in Chinese with English abstract)
    [13] 李志强,许强,李姝,等. 按主成分分析法研究黄土灌溉区水-岩(土)相互作用[J]. 科学技术与工程,2017,17(23):161 − 167. [LI Zhiqiang,XU Qiang,LI Shu,et al. Study on water-rock/soil interaction in loess irrigation area based on the principal component analysis[J]. Science Technology and Engineering,2017,17(23):161 − 167. (in Chinese with English abstract) doi:  10.3969/j.issn.1671-1815.2017.23.026
    [14] 王志兵,徐则民. 头寨滑坡玄武岩腐岩的岩石化学和矿物学特征[J]. 矿物学报,2008,28(4):447 − 454. [WANG Zhibing,XU Zemin. Petrochemistry and mineralogy of basalt saprolite in Touzhai landslide[J]. Acta Mineralogica Sinica,2008,28(4):447 − 454. (in Chinese with English abstract) doi:  10.3321/j.issn:1000-4734.2008.04.017
    [15] 许强. 对地质灾害隐患早期识别相关问题的认识与思考[J]. 武汉大学学报·信息科学版,2020,45(11):1651 − 1659. [XU Qiang. Understanding and consideration of related issues in early identification of potential geohazards[J]. Geomatics and Information Science of Wuhan University,2020,45(11):1651 − 1659. (in Chinese with English abstract)
    [16] 沈钦华,王火焰,周健民,等. 含钾矿物中钾的释放及其与溶液环境中离子种类的关系[J]. 土壤,2009,41(6):862 − 868. [SHEN Qinhua,WANG Huoyan,ZHOU Jianmin,et al. Dynamic release of potassium from potassium bearing minerals as affected by ion species in solution[J]. Soils,2009,41(6):862 − 868. (in Chinese with English abstract)
    [17] 马水山,雷俊荣,张保军,等. 滑坡体水岩作用机制与变形机理研究[J]. 长江科学院院报,2005,22(5):37 − 39. [MA Shuishan,LEI Junrong,ZHANG Baojun,et al. Study on rock-water interaction and deformation mechanism of landslide[J]. Journal of Yangtze River Scientific Research Institute,2005,22(5):37 − 39. (in Chinese with English abstract) doi:  10.3969/j.issn.1001-5485.2005.05.011
    [18] SOEDER D J. The Marcellus shale:resources and reservations[J]. Eos,Transactions American Geophysical Union,2010,91(32):277 − 278. doi:  10.1029/2010EO320001
    [19] 唐良琴,聂德新,任光明. 软弱夹层粘粒含量与抗剪强度参数的关系分析[J]. 中国地质灾害与防治学报,2003,14(2):58 − 62. [TANG Liangqin,NIE Dexin,REN Guangming. The relational analysis between the clay grain content and strength characteristics of weak intercalated layer[J]. The Chinese Journal of Geological Hazard and Control,2003,14(2):58 − 62. (in Chinese with English abstract)
    [20] HERMANRUD C,VENSTAD J M,CARTWRIGHT J,et al. Consequences of water level drops for soft sediment deformation and vertical fluid leakage[J]. Mathematical Geosciences,2013,45(1):1 − 30. doi:  10.1007/s11004-012-9435-0
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  92
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-02
  • 修回日期:  2021-07-18

目录

    /

    返回文章
    返回