ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD 收录期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

药物和个人护理用品对地下水污染的风险评价

吴林 石国伟 刘雅慈 李亚松 李青生

吴林,石国伟,刘雅慈,等. 药物和个人护理用品对地下水污染的风险评价[J]. 水文地质工程地质,2023,50(1): 189-196 doi:  10.16030/j.cnki.issn.1000-3665.202202028
引用本文: 吴林,石国伟,刘雅慈,等. 药物和个人护理用品对地下水污染的风险评价[J]. 水文地质工程地质,2023,50(1): 189-196 doi:  10.16030/j.cnki.issn.1000-3665.202202028
WU Lin, SHI Guowei, LIU Yaci, et al. Groundwater pollution risk evaluation of pharmaceuticals and personal care products in land application of sludge[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 189-196 doi:  10.16030/j.cnki.issn.1000-3665.202202028
Citation: WU Lin, SHI Guowei, LIU Yaci, et al. Groundwater pollution risk evaluation of pharmaceuticals and personal care products in land application of sludge[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 189-196 doi:  10.16030/j.cnki.issn.1000-3665.202202028

药物和个人护理用品对地下水污染的风险评价

doi: 10.16030/j.cnki.issn.1000-3665.202202028
基金项目: 国家自然科学基金项目(41902259;41907175);河北省自然科学基金项目(D2020504006);中国地质调查局地质调查项目(DD20190303);福建省海洋生态保护与修复重点实验室开放基金项目(EPR2020006)
详细信息
    作者简介:

    吴林(1991-),男,博士,助理研究员,主要从事水文地质和环境地质研究。E-mail:wulin_shs@mail.cgs.gov.cn

    通讯作者:

    李亚松(1983-),男,博士,研究员,主要从事水文地质和环境地质研究。E-mail:liyasong@mail.cgs.gov.cn

  • 中图分类号: P641.69

Groundwater pollution risk evaluation of pharmaceuticals and personal care products in land application of sludge

  • 摘要: 为进一步明确污泥土地利用过程中新型有机污染物——药物和个人护理用品(PPCPs)对地下水污染的风险,采用数学模型初步预测和评价了29种PPCPs在砂土和壤土2种介质条件下对地下水污染的风险。结果表明:砂土条件下,环丙沙星、氧氟沙星、土霉素、诺氟沙星和咖啡因等5种PPCPs的风险指数大于1,具有高地下水污染风险,其中,除咖啡因外,其余4种PPCPs均为抗生素类药物,应加强其在地下水中的监测和防控。壤土条件下,29种PPCPs对地下水均表现为低污染风险。吸附强度是影响PPCPs对地下水污染风险的最主要因素。PPCPs在包气带中的半衰期、有机碳-水分配系数、土壤密度、有机碳含量、含有机质的上层土壤层厚度是模型主要的敏感参数。不确定性分析显示,PPCPs的有机碳-水分配系数和其在包气带中的半衰期的改变对地下水污染风险评价结果影响较大。验证表明,地下水污染风险指数越大的PPCPs在地下水中的检出率也越高,说明评价结果具有一定的合理性。今后应加强对PPCPs降解产物、地下水中安全浓度值、共存PPCPs相互作用及介质非均质性影响等方面的研究,以便更加精确地评价PPCPs对地下水污染的风险。
  • 图  1  砂土(a−c)和壤土(d−f)条件下PPCPs的lgCw值与其lgKoc、lgT1/2和lgM的相关关系

    Figure  1.  Relationship between lgCw and lgKoc, lgT1/2 and lgM of PPCPs under sand (a−c) and loam (d−f) soil conditions

    图  2  砂土条件下PPCPs的地下水污染风险指数对参数敏感性及不确定性分析

    Figure  2.  Sensitivity and uncertainty analyses of parameters with groundwater pollution risk index of PPCPs under sand soil conditions

    图  3  地下水中PPCPs的检出率[9, 27-37]与其在砂土条件下的lgRI的关系

    Figure  3.  Relationship between the detection rate of PPCPs in groundwater[9, 27-37] and their lgRI values under sand soil conditions

    表  1  污泥中代表性PPCPs及其理化性质等参数

    Table  1.   Common PPCPs in sludge and their physicochemical properties

    名称CAS号半衰期
    /d
    有机碳-
    水分配系数
    /(cm3·g−1
    土地利用量
    /(g·a−1·m−2
    最大安全
    浓度
    /(mg·L−1
    名称CAS号半衰期
    /d
    有机碳-
    水分配系数
    /(cm3·g−1
    土地利用量
    /(g·a−1·m−2
    最大安全
    浓度
    /(mg·L−1
    金霉素57-62-53601520.00.0105.00×10−3咪康唑22916-47-836061370.00.3201.00×10−3
    红霉素114-07-836044300.00.0342.00×10−4噻苯咪唑148-79-8302212.00.0468.44×10−4
    土霉素79-57-2120270.00.0361.70×10−3三氯生3380-34-512018420.05.2001.55×10−3
    四环素60-54-8120558.00.1588.16×10−2三氯卡班101-20-21205394.015.0002.50×10−5
    米诺环素10118-90-8360437.00.0522.19×10−1甲氧苄氨嘧啶738-70-5120905.00.0111.78×10−2
    差向四环素23313-80-6120558.00.0108.42×10−3西咪替丁51481-61-975918.70.2107.40×10−1
    阿奇霉素83905-01-536043400.00.3502.50×10−4雷尼替丁66357-35-57527760.00.0093.10×10−3
    克拉霉素81103-11-936045300.00.0272.50×10−3吉非罗齐25812-30-075453.30.0631.76×10−3
    强力霉素564-25-0120566.00.4009.06×10−1二甲双胍657-24-930140.90.1301.30×10−1
    环丙沙星85721-33-1120305.02.8002.97×10−3氟西汀54910-89-3120207400.00.0718.20×10−4
    诺氟沙星70458-96-7120305.00.1205.00×10−3苯海拉明58-73-1758242.00.4803.74×10−4
    氧氟沙星82419-36-1120482.02.3004.74×10−3地尔硫卓42399-41-71209502.00.0198.20×10−3
    布洛芬15687-27-130394.30.1001.91×10−5咖啡因58-08-23062.30.1002.20×10−3
    萘普生22204-53-130555.00.0503.56×10−5可替宁486-56-675807.50.0122.40×10−4
    卡马西平298-46-4753871.00.0686.36×10−3
    注:PPCPs的半衰期(T1/2)、有机碳-水分配系数(Koc)采用EPI Suite(4.11)软件和US EPA Comptox Chemistry Dashboard (https://comptox.epa.gov/dashboard/)查询得到。PPCPs的土地利用量(M)根据每年产生约5.6×106~6.9×106 t(干重)的污泥量,且60%利用于土地[17],参照典型PPCPs的利用水平确定。PPCPs的最大安全浓度(Cs)通过ECOTOX Knowledgebase (https://cfpub.epa.gov/ecotox/search.cfm)查询得到。
    下载: 导出CSV

    表  2  代表性砂土和壤土介质条件参数[12, 14, 19-20]

    Table  2.   Selected parameters for sand and loam soils[12, 14, 19-20]

    参数砂土壤土
    G/m23
    Z/m0.30.6
    ρ/(g·cm−31.251.49
    w/(cm3·cm−30.070.15
    R/(m·a−10.60.2
    foc/(g·g−10.0050.050
    下载: 导出CSV

    表  3  PPCPs对地下水污染的风险指数

    Table  3.   Risk index of groundwater pollution by PPCPs

    名称RIRI等级等级
    环丙沙星130<0.001
    氧氟沙星21.0<0.001
    土霉素3.68<0.001
    诺氟沙星3.32<0.001
    咖啡因2.08<0.001
    吉非罗齐0.234<0.001
    米诺环素0.129<0.001
    金霉素0.102<0.001
    四环素0.051<0.001
    布洛芬0.040<0.001
    差向四环素0.031<0.001
    强力霉素0.011<0.001
    可替宁0.008<0.001
    二甲双胍0.006<0.001
    甲氧苄氨嘧啶0.002<0.001
    萘普生<0.001<0.001
    西咪替丁<0.001<0.001
    三氯卡班<0.001<0.001
    卡马西平<0.001<0.001
    噻苯咪唑<0.001<0.001
    地尔硫卓<0.001<0.001
    苯海拉明<0.001<0.001
    阿奇霉素<0.001<0.001
    红霉素<0.001<0.001
    克拉霉素<0.001<0.001
    三氯生<0.001<0.001
    咪康唑<0.001<0.001
    雷尼替丁<0.001<0.001
    氟西汀<0.001<0.001
    下载: 导出CSV
  • [1] LAPWORTH D,BARAN N,STUART M,et al. Emerging organic contaminants in groundwater:A review of sources,fate and occurrence[J]. Environmental Pollution,2012,163(4):287 − 303.
    [2] LI Zhen,XIANG Xi,LI Miao,et al. Occurrence and risk assessment of pharmaceuticals and personal care products and endocrine disrupting chemicals in reclaimed water and receiving groundwater in China[J]. Ecotoxicology and Environmental Safety,2015,119:74 − 80. doi:  10.1016/j.ecoenv.2015.04.031
    [3] 秦晓鹏,刘菲,王广才,等. 抗生素在土壤/沉积物中吸附行为的研究进展[J]. 水文地质工程地质,2015,42(3):142 − 148. [QIN Xiaopeng,LIU Fei,WANG Guangcai,et al. Adsorption of antibiotics in soils/sediments:A review[J]. Hydrogeology & Engineering Geology,2015,42(3):142 − 148. (in Chinese with English abstract)
    [4] 靳孟贵,罗泽娇,梁杏,等. 再生水地表回灌补给地下水的水质安全保障体系[J]. 地球科学,2012,37(2):238 − 246. [JIN Menggui,LUO Zejiao,LIANG Xing,et al. Security system of water quality for groundwater recharge with infiltration basin and reclaimed water[J]. Earth Science,2012,37(2):238 − 246. (in Chinese with English abstract)
    [5] WU Chenxi,SPONGBERG A,WITTER J,et al. Detection of pharmaceuticals and personal care products in agricultural soils receiving biosolids application[J]. CLEAN – Soil,Air,Water,2010,38(3):230 − 237.
    [6] 黄德亮,何江涛,杨蕾,等. 某市再生水灌区水土环境中PPCPs污染特征分析[J]. 中国环境科学,2016,36(9):2614 − 2623. [HUANG Deliang,HE Jiangtao,YANG Lei,et al. Distribution characteristics of pharmaceuticals and personal care products in water and soil environment in reclaimed water irrigation area of a city[J]. China Environmental Science,2016,36(9):2614 − 2623. (in Chinese with English abstract) doi:  10.3969/j.issn.1000-6923.2016.09.010
    [7] 王博欣,李炳华,张大胜,等. 北运河河水和地下水PPCPs污染特征及风险评价[J]. 南水北调与水利科技(中英文),2020,18(6):138 − 147. [WANG Boxin,LI Binghua,ZHANG Dasheng,et al. Pollution characteristics and ecological risk assessment of pharmaceuticals and personal care products (PPCPs) in Beiyun river and groundwater of North Canal[J]. South-to-North Water Transfers and Water Science & Technology,2020,18(6):138 − 147. (in Chinese with English abstract)
    [8] EKPEGHERE K,LEE J,KIM H,et al. Determination and characterization of pharmaceuticals in sludge from municipal and livestock wastewater treatment plants[J]. Chemosphere,2017,168:1211 − 1221. doi:  10.1016/j.chemosphere.2016.10.077
    [9] GOTTSCHALL N,TOPP E,METCALFE C,et al. Pharmaceutical and personal care products in groundwater,subsurface drainage,soil,and wheat grain,following a high single application of municipal biosolids to a field[J]. Chemosphere,2012,87(2):194 − 203. doi:  10.1016/j.chemosphere.2011.12.018
    [10] GARCÍA-SANTIAGO X,GARRIDO J,LEMA J,et al. Fate of pharmaceuticals in soil after application of STPs products:Influence of physicochemical properties and modelling approach[J]. Chemosphere,2017,182:406 − 415. doi:  10.1016/j.chemosphere.2017.05.049
    [11] 殷哲云,闵露娟,金立涛,等. HPLC-MS/MS测定3类污水处理厂污泥及污水中的8种药物[J]. 环境化学,2018,37(8):1720 − 1727. [YIN Zheyun,MIN Lujuan,JIN Litao,et al. HPLC-MS/MS determination of eight PPCPs in sewage and sludge from three types of sewage treatment plants[J]. Environmental Chemistry,2018,37(8):1720 − 1727. (in Chinese with English abstract) doi:  10.7524/j.issn.0254-6108.2017110803
    [12] 朱辉,叶淑君,吴吉春,等. 中国典型有机污染场地土层岩性和污染物特征分析[J]. 地学前缘,2021,28(5):26 − 34. [ZHU Hui,YE Shujun,WU Jichun,et al. Characteristics of soil lithology and pollutants in typical contamination sites in China[J]. Earth Science Frontiers,2021,28(5):26 − 34. (in Chinese with English abstract) doi:  10.13745/j.esf.sf.2021.2.15
    [13] MCCLELLAN K,HALDEN R. Pharmaceuticals and personal care products in archived US biosolids from the 2001 EPA national sewage sludge survey[J]. Water Research,2010,44(2):658 − 668. doi:  10.1016/j.watres.2009.12.032
    [14] HASSANPOUR B,RICHARDS B,GOEHRING L,et al. Predicting the fate of preferentially moving herbicides[J]. Vadose Zone Journal,2019,18(1):180193.
    [15] 童蕾,姚林林,刘慧,等. 抗生素在地下水系统中的环境行为及生态效应研究进展[J]. 生态毒理学报,2016,11(2):27 − 36. [TONG Lei,YAO Linlin,LIU Hui,et al. Review on the environmental behavior and ecological effect of antibiotics in groundwater system[J]. Asian Journal of Ecotoxicology,2016,11(2):27 − 36. (in Chinese with English abstract)
    [16] WU Lin,BI E. Sorption of ionic and neutral species of pharmaceuticals to loessial soil amended with biochars[J]. Environmental Science and Pollution Research,2019,26(35):35871 − 35881. doi:  10.1007/s11356-019-06721-7
    [17] JONES-LEPP T,STEVENS R. Pharmaceuticals and personal care products in biosolids/sewage sludge:The interface between analytical chemistry and regulation[J]. Analytical and Bioanalytical Chemistry,2007,387(4):1173 − 1183. doi:  10.1007/s00216-006-0942-z
    [18] 钟秀,马腾,刘林,等. 地下水饮用水源地污染源风险等级评价方法研究[J]. 安全与环境工程,2014,21(2):104 − 108. [ZHONG Xiu,MA Teng,LIU Lin,et al. Method research on the risk level evaluation of contamination sources for drinking groundwater wellhead[J]. Safety and Environmental Engineering,2014,21(2):104 − 108. (in Chinese with English abstract) doi:  10.3969/j.issn.1671-1556.2014.02.022
    [19] STEENHUIS T,JACKSON C,KUNG S,et al. Measurement of groundwater recharge on eastern Long Island,New York,USA[J]. Journal of Hydrology,1985,79(1):145 − 169.
    [20] ABU-HAMDEH N. SW—soil and water:Measurement of the thermal conductivity of sandy loam and clay loam soils using single and dual probes[J]. Journal of Agricultural Engineering Research,2001,80(2):209 − 216. doi:  10.1006/jaer.2001.0730
    [21] 张毅,马艳飞,宋帅,等. 环渤海地区2,4,4’-三氯联苯的多介质归趋模拟[J]. 环境科学,2020,41(6):2625 − 2634. [ZHANG Yi,MA Yanfei,SONG Shuai,et al. Fate simulation of 2,4,4’-trichlorobiphenyl in the Bohai rim using the multimedia model[J]. Environmental Science,2020,41(6):2625 − 2634. (in Chinese with English abstract)
    [22] 吴戈男,胡中民,李胜功,等. SWH双源蒸散模型模拟效果验证及不确定性分析[J]. 地理学报,2016,71(11):1886 − 1897. [WU Genan,HU Zhongmin,LI Shenggong,et al. Evaluation and uncertainty analysis of a two-source evapotranspiration model[J]. Acta Geographica Sinica,2016,71(11):1886 − 1897. (in Chinese with English abstract) doi:  10.11821/dlxb201611002
    [23] 吴林,李峰,杜蓓蓓. 药物及个人护理品在土壤中的淋溶迁移性评价[J]. 环境科学与技术,2015,38(5):163 − 167. [WU Lin,LI Feng,DU Beibei. Evaluation of leachability of pharmaceuticals and personal care products in soils[J]. Environmental Science & Technology,2015,38(5):163 − 167. (in Chinese with English abstract)
    [24] MA Meng,DILLON P,ZHENG Yan. Determination of sulfamethoxazole degradation rate by an in situ experiment in a reducing alluvial aquifer of the North China Plain[J]. Environmental Science & Technology,2019,53(18):10620 − 10628.
    [25] 赵勇胜,王卓然. 污染场地地下水中污染物迁移及风险管控[J]. 环境保护,2021,49(20):21 − 26. [ZHAO Yongsheng,WANG Zhuoran. Groundwater pollutants transport and risk control for contaminated site[J]. Environmental Protection,2021,49(20):21 − 26. (in Chinese with English abstract)
    [26] 金爱芳,李广贺,张旭. 地下水污染风险源识别与分级方法[J]. 地球科学,2012,37(2):247 − 252. [JIN Aifang,LI Guanghe,ZHANG Xu. The risk source identification and classification methodology of groundwater pollution[J]. Earth Science,2012,37(2):247 − 252. (in Chinese with English abstract)
    [27] LOOS R,LOCORO G,COMERO S,et al. Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water[J]. Water Research,2010,44(14):4115 − 4126. doi:  10.1016/j.watres.2010.05.032
    [28] BARNES K,KOLPIN D,FURLONG E,et al. A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States—I) Groundwater[J]. Science of the Total Environment,2008,402(2/3):192 − 200.
    [29] 陈卫平,彭程伟,杨阳,等. 北京市地下水中典型抗生素分布特征与潜在风险[J]. 环境科学,2017,38(12):5074 − 5080. [CHEN Weiping,PENG Chengwei,YANG Yang,et al. Distribution characteristics and risk analysis of antibiotic in the groundwater in Beijing[J]. Environmental Science,2017,38(12):5074 − 5080. (in Chinese with English abstract)
    [30] TONG Lei,LI Ping,WANG Yanxin,et al. Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS[J]. Chemosphere,2009,74(8):1090 − 1097. doi:  10.1016/j.chemosphere.2008.10.051
    [31] MA Yeping,LI Miao,WU Miaomiao,et al. Occurrences and regional distributions of 20 antibiotics in water bodies during groundwater recharge[J]. Science of The Total Environment,2015,518-519:498 − 506. doi:  10.1016/j.scitotenv.2015.02.100
    [32] YAO Linlin,WANG Yanxin,TONG Lei,et al. Occurrence and risk assessment of antibiotics in surface water and groundwater from different depths of aquifers:A case study at Jianghan Plain,central China[J]. Ecotoxicology and Environmental Safety,2017,135:236 − 242. doi:  10.1016/j.ecoenv.2016.10.006
    [33] CHEN Liang,LANG Hang,LIU Fei,et al. Presence of antibiotics in shallow groundwater in the northern and southwestern regions of China[J]. Groundwater,2018,56(3):451 − 457. doi:  10.1111/gwat.12596
    [34] LIN Yenching,LAI Weipo,TUNG Hsinhsin,et al. Occurrence of pharmaceuticals,hormones,and perfluorinated compounds in groundwater in Taiwan[J]. Environmental Monitoring and Assessment,2015,187(5):256. doi:  10.1007/s10661-015-4497-3
    [35] LI Zhiping,YU Xiaopeng,YU Furong,et al. Occurrence,sources and fate of pharmaceuticals and personal care products and artificial sweeteners in groundwater[J]. Environmental Science and Pollution Research,2021,28(17):20903 − 20920. doi:  10.1007/s11356-021-12721-3
    [36] SZYMCZYCHA B,BORECKA M,BIAŁK-BIELIŃSKA A,et al. Submarine groundwater discharge as a source of pharmaceutical and caffeine residues in coastal ecosystem:Bay of Puck,southern Baltic Sea case study[J]. Science of the Total Environment,2020,713:136522. doi:  10.1016/j.scitotenv.2020.136522
    [37] LESSER L,MORA A,MOREAU C,et al. Survey of 218 organic contaminants in groundwater derived from the world’s largest untreated wastewater irrigation system:Mezquital Valley,Mexico[J]. Chemosphere,2018,198:510 − 521. doi:  10.1016/j.chemosphere.2018.01.154
    [38] YUAN Qiaoling,LI Zhiping,LI Leicheng,et al. Pharmaceuticals and personal care products transference-transformation in aquifer system[J]. Journal of Groundwater Science and Engineering,2020,8(4):358 − 365.
    [39] 张涛,郭晓,刘俊杰,等. 江西梅江流域土壤中四环素类抗生素的含量及空间分布特征[J]. 环境科学学报,2017,37(4):1493 − 1501. [ZHANG Tao,GUO Xiao,LIU Junjie,et al. Concentration and spatial distribution of tetracycline antibiotics in soil of Meijiang river catchment,Jiangxi Province[J]. Acta Scientiae Circumstantiae,2017,37(4):1493 − 1501. (in Chinese with English abstract)
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  129
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-15
  • 修回日期:  2022-05-18
  • 网络出版日期:  2022-12-09
  • 刊出日期:  2023-01-13

目录

    /

    返回文章
    返回