ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD(核心库)来源期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu2+对重塑黄土饱和渗透系数的影响研究

贾洋 崔素丽

贾洋,崔素丽. Cu2+对重塑黄土饱和渗透系数的影响研究[J]. 水文地质工程地质,2023,50(3): 93-103 doi:  10.16030/j.cnki.issn.1000-3665.202201042
引用本文: 贾洋,崔素丽. Cu2+对重塑黄土饱和渗透系数的影响研究[J]. 水文地质工程地质,2023,50(3): 93-103 doi:  10.16030/j.cnki.issn.1000-3665.202201042
JIA Yang, CUI Suli. Effect of Cu2+ on the saturated coefficient of permeability of remolded loess[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 93-103 doi:  10.16030/j.cnki.issn.1000-3665.202201042
Citation: JIA Yang, CUI Suli. Effect of Cu2+ on the saturated coefficient of permeability of remolded loess[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 93-103 doi:  10.16030/j.cnki.issn.1000-3665.202201042

Cu2+对重塑黄土饱和渗透系数的影响研究

doi: 10.16030/j.cnki.issn.1000-3665.202201042
基金项目: 国家自然科学基金项目(41630639;41772285)
详细信息
    作者简介:

    贾洋(1996-),男,硕士研究生,主要从事重金属污染黄土的研究工作。E-mail:2291417023@qq.com

    通讯作者:

    崔素丽(1980-),女,博士,副教授,主要从事特殊土工程性质、改性土工程性质、地质灾害防治的研究工作。E-mail:cuisl@nwu.edu.cn

  • 中图分类号: P642.13+1

Effect of Cu2+ on the saturated coefficient of permeability of remolded loess

  • 摘要: 渗透系数是评价重金属污染液在重塑黄土中迁移扩散作用的一个重要指标。已有研究表明污染液的pH值、可溶性盐浓度、离子含量和饱和渗透系数的变化存在一定的相关关系,但未明晰渗透过程中的地球化学反应机制。基于此,采集了西安白鹿原地区的更新统(Qp)黄土,选取Cu2+溶液作为渗透溶液,开展了重塑黄土的饱和渗透试验,建立了基于Netpath软件的地球化学反演模型。结果表明:试验过程中饱和渗透系数从第1天开始显著降低,且与去离子试验组相比降低幅度较大,极差为5.57×10−5 cm/s;离子来源分析证明了地球化学反应的发生,存在着矿物的溶解、沉淀以及阳离子交换作用;地球化学反演模拟结果显示由于Cu2+的存在,加剧了矿物溶解产生大量的Ca2+,促进碳酸盐矿物溶解平衡左移,从第1天开始方解石和白云石持续形成沉淀,沉淀量分别为1.912,0.958 mmol,从而堵塞渗流孔隙,降低土体的渗透系数。研究结果有助于了解重金属离子侵入过程中重塑黄土饱和渗透系数的变化,同时对于进一步明晰影响渗透系数变化的地球化学机制具有重要的理论意义。
  • 图  1   饱和渗透试验装置

    Figure  1.  Saturated penetration test device

    图  2  饱和渗透系数变化图

    Figure  2.  Variation of the saturated coefficient of permeability

    图  3  渗滤液离子浓度变化图

    Figure  3.  Variation of ion concentration in leachate

    图  4  渗滤水样的Piper图

    Figure  4.  Piper diagram of the leachate water samples

    图  5  离子二元变化图(DIW)

    Figure  5.  Ion binary change diagram (DIW)

    图  6  离子二元变化图(Cu2+

    Figure  6.  Ion binary change diagram (Cu2+)

    图  7  地球化学反演模型模拟结果

    Figure  7.  Simulation results of the geochemical inversion model

    图  8   主要矿物的摩尔转移总量

    Figure  8.  Total molar transfer of the major minerals

    图  9  黄土样品渗透前后各化学成分的质量分数

    Figure  9.  Chemical composition of loess samples before and after infiltration

    图  10  渗透后黄土样品的微观结构

    Figure  10.  Microstructure of loess samples afte infiltration

    表  1  土样的物理性质

    Table  1.   Physical properties of the soil sample

    参数最优含水率
    /%
    最大干密度
    /(g·cm−3
    比重液限/%塑限/%粒度分布/%
    粉粒黏粒砂粒
    取值17.781.762.639.4719.7321.3278.380.30
    下载: 导出CSV

    表  2  土样的主要化学成分

    Table  2.   Main chemical components of the soil sample

    化学成分SiO2Al2O3Fe2O3MgOCaONa2OK2O其他
    质量分数/%62.151.7412.951.965.652.414.898.25
    下载: 导出CSV

    表  3  饱和渗透系数的极差和平均值

    Table  3.   Range and average value of the saturated coefficient of permeability

    溶液类型最大值/(cm·s−1最小值/(cm·s−1极差/(cm·s−1
    DIW7.37×10−54.97×10−52.40×10−5
    Cu2+溶液6.66×10−51.09×10−55.57×10−5
    下载: 导出CSV

    表  4  矿物饱和指数(SI

    Table  4.   Mineral saturation index (SI)

    离子类型渗透时间/d矿物相
    方解石白云石萤石石膏岩盐
    DIW0.5−0.43−1.44−0.63−2.58−7.14
    1.0−0.71−1.94−0.56−3.13−7.32
    1.5−0.96−2.50−0.40−3.27−7.47
    2.0−0.99−2.57−0.81−3.29−7.79
    2.5−0.50−3.50−1.33−3.24−8.19
    3.0−0.16−2.87−1.45−3.07−8.67
    3.50.05−2.56−1.58−3.04−9.15
    4.00.23−2.73−1.52−2.87−9.42
    4.50.18−2.15−1.50−2.76−9.47
    5.00.09−2.81−1.63−2.89−9.91
    Cu2+0.5−0.22−1.00−0.68−1.06−6.79
    1.00.260.03−0.76−1.83−7.69
    1.50.390.27−0.78−1.88−8.85
    2.00.340.06−0.93−1.88−9.20
    2.50.410.08−0.95−1.87−9.47
    3.00.12−0.57−1.05−1.86−9.58
    3.50.550.23−1.19−1.86−9.64
    4.00.620.35−1.16−1.86−9.62
    4.50.550.2−1.18−1.85−9.71
    5.00.480.04−1.39−1.87−9.66
    下载: 导出CSV

    表  5  潜在的化学反应

    Table  5.   Potential chemical reactions

    序号反应相化学反应
    1方解石CaCO3=Ca2++CO32−
    2白云石CaMg(CO3)=Ca2++Mg2++CO32−
    3萤石CaF2=Ca2++2F
    4石膏CaSO4·2H2O=Ca2++SO42−+2H2O
    5钾长石KAlSi3O8+8H2O=K++Al(OH)4−+3H4SiO4
    6伊利石K0.6Mg0.25Al2.3Si3.5O10(OH)2+11.2H2O=
    0.6K++0.25Mg2++2.3Al(OH)4−+3.5H4SiO4+1.2H+
    7岩盐NaCl=Na++Cl
    8离子交换Ca2++2NaX=2Na++CaX2
    下载: 导出CSV
  • [1] 习羽,李同录,江睿君,等. 陇东黄土工程地质分层及其物理特性[J]. 水文地质工程地质,2018,45(4):67 − 72. [XI Yu,LI Tonglu,JIANG Ruijun,et al. Engineering geological stratigraphy and physical properties of the loess in eastern Gansu[J]. Hydrogeology & Engineering Geology,2018,45(4):67 − 72. (in Chinese with English abstract) doi:  10.16030/j.cnki.issn.1000-3665.2018.04.10
    [2] XU Panpan,ZHANG Qiying,QIAN Hui,et al. Investigation into microscopic mechanisms of anisotropic saturated permeability of undisturbed Q2 loess[J]. Environmental Earth Sciences,2020,79(18):412 − 426. doi:  10.1007/s12665-020-09152-7
    [3] WANG Haike,  QIAN Hui,  GAO Yanyan.  Non-Darcy flow in loess at low hydraulic gradient[J].  Engineering Geology,  2020,  267:  105483.
    [4] 王艳,唐晓武,刘晶晶,等. 黄土对锰离子的吸附特性及机理研究[J]. 岩土工程学报,2012,34(12):2292 − 2298. [WANG Yan,TANG Xiaowu,LIU Jingjing,et al. Adsorption behavior and mechanism of loess soil towards Manganese ions[J]. Chinese Journal of Geotechnical Engineering,2012,34(12):2292 − 2298. (in Chinese with English abstract)
    [5] LI Zhenze,TANG Xiaowu,CHEN Yunmin,et al. Sorption behavior and mechanism of Pb(II) on Chinese loess[J]. Journal of Environmental Engineering,2009,135(1):58 − 67. doi:  10.1061/(ASCE)0733-9372(2009)135:1(58)
    [6] TANG Xiaowu,  LI Zhenze,  CHEN Yunmin,  et al.  Removal of Cu(Ⅱ) from aqueous solution by adsorption on Chinese Quaternary loess:  Kinetics and equilibrium studies[J].  Environmental Letters,  2008,  43(7):  779-791.  
    [7] TANG Xiaowu,  LI Zhenze,  CHEN Yunmin.  Behavior and mechanism of Zn(II) adsorption on  Chinese loess at dilute slurry concentrations[J].  Journal of Chemical Technology and Biotechnology,  2008,  83:  673–682.
    [8] 米栋云,李熠,董晓强. 重金属Pb2+污染土的渗透性能研究[J]. 中国科技论文,2016,11(15):1778 − 1781. [MI Dongyun,LI Yi,DONG Xiaoqiang. Study on hydraulic permeability of heavy metal Pb2+ contaminated soil[J]. China Sciencepaper,2016,11(15):1778 − 1781. (in Chinese with English abstract) doi:  10.3969/j.issn.2095-2783.2016.15.018
    [9] 杨波. 重金属污染重塑黄土的抗剪强度与渗透性研究[D]. 太原: 太原理工大学, 2016

    YANG Bo. Study on shear strength and permeability of remolded loess polluted by heavy metal[D]. Taiyuan: Taiyuan University of Technology, 2016. (in Chinese with English abstract)
    [10] 李熠. Pb(Ⅱ)、 Zn(Ⅱ)污染土特性研究[D]. 太原: 太原理工大学, 2016

    LI Yi. Study on Pb(Ⅱ)or Zn(Ⅱ) contaminated soil[D]. Taiyuan: Taiyuan University of Technology, 2016. (in Chinese with English abstract)
    [11] 郭争争. 重金属离子对膨润土防水毯防渗性能影响研究[D]. 武汉: 武汉理工大学, 2020

    GUO Zhengzheng. Study on the influence of heavy metal ions on the impermeability of geosynthetic clay liner[D]. Wuhan: Wuhan University of Technology, 2020. (in Chinese with English abstract)
    [12] HAGE J T,MULDER E. Preliminary assessment of three new European leaching tests[J]. Waste Management (New York,N Y),2004,24(2):165 − 172. doi:  10.1016/S0956-053X(03)00129-6
    [13] PLUMMER L N,PRESTEMON E C,PARKHURST D L. An interactive code (NETPATH) for modeling net geochemical reactions along a flow path,version 2.0[J]. Water-Resources Investigations Report,1994,94:4169.
    [14] XU Panpan,ZHANG Qiying,QIAN Hui,et al. Exploring the geochemical mechanism for the saturated permeability change of remolded loess[J]. Engineering Geology,2021,284:105927. doi:  10.1016/j.enggeo.2020.105927
    [15] XU Panpan, ZHANG Qiying, QIAN Hui, et al. Effect of sodium chloride concentration on saturated permeability of remolded loess[J]. Minerals,2020,10(2):199. doi:  10.3390/min10020199
    [16] AL-GHANIMY M A, AL-MUTAWKI K G, FALAH H H. Geochemical modeling of groundwater in AL Teeb area (North East Missan Governorate)[J]. Journal of Physics: Conference Series, 2019, 1294(8): 082002.
    [17] ZHENG Xiuqing,  ZANG Hongfei,  ZHANG Yongbo,  et al. A study of hydrogeochemical processes on Karst groundwater using a mass balance model in the Liulin Spring area, North China[J].  Water.  2018,  10(7): 903.
    [18] ZHANG Qiying,XU Panpan,QIAN Hui,et al. Hydrogeochemistry and fluoride contamination in Jiaokou Irrigation District,Central China:Assessment based on multivariate statistical approach and human health risk[J]. The Science of the Total Environment,2020,741:140460. doi:  10.1016/j.scitotenv.2020.140460
    [19] CUISINIER O,AURIOL J C,LE BORGNE T,et al. Microstructure and hydraulic conductivity of a compacted lime-treated soil[J]. Engineering geology,2011,123(3):187 − 193. doi:  10.1016/j.enggeo.2011.07.010
    [20] MULLER E,GAUCHER E C,DURLET C,et al. The origin of continental carbonates in Andean salars:A multi-tracer geochemical approach in Laguna Pastos Grandes (Bolivia)[J]. Geochimica et Cosmochimica Acta,2020,279:220 − 237. doi:  10.1016/j.gca.2020.03.020
    [21] LI Peiyue,ZHANG Yuting,YANG Nuan,et al. Major ion chemistry and quality assessment of groundwater in and around a mountainous tourist town of China[J]. Exposure and Health,2016,8(2):239 − 252. doi:  10.1007/s12403-016-0198-6
    [22] LI Peiyue,LI Xinyan,MENG Xiangyi,et al. Appraising groundwater quality and health risks from contamination in a semiarid region of Northwest China[J]. Exposure and Health,2016,8(3):361 − 379. doi:  10.1007/s12403-016-0205-y
    [23] 朱洲洋,肖长来,梁秀娟,等. 安图县玄武岩区偏硅酸型天然矿泉水水化学特征及形成机理[J]. 水利水电技术(中英文),2021,52(10):146 − 156. [ZHU Zhouyang,XIAO Changlai,LIANG Xiujuan,et al. Hydrochemical characteristics and formation mechanism of metasilicic acid type natural mineral water in basalt area of Antu County[J]. Water Resources and Hydropower Engineering,2021,52(10):146 − 156. (in Chinese with English abstract)
    [24] 张春潮,侯新伟,李向全,等. 三姑泉域岩溶地下水水化学特征及形成演化机制[J]. 水文地质工程地质,2021,48(3):62 − 71. [ZHANG Chunchao,HOU Xinwei,LI Xiangquan,et al. Hydrogeochemical characteristics and evolution mechanism of karst groundwater in the catchment area of the Sangu Spring[J]. Hydrogeology & Engineering Geology,2021,48(3):62 − 71. (in Chinese with English abstract) doi:  10.16030/j.cnki.issn.1000-3665.202004059
    [25] 张鸿,周权平,姜月华,等. 长江干流水化学成因与风化过程CO2消耗通量解析[J]. 水文地质工程地质,2022,49(1):30 − 40. [ZHANG Hong,ZHOU Quanping,JIANG Yuehua,et al. Hydrochemical origins and weathering-controlled CO2 consumption rates in the mainstream of the Yangtze River[J]. Hydrogeology & Engineering Geology,2022,49(1):30 − 40. (in Chinese with English abstract)
    [26] ZHANG Qiying,XU Panpan,QIAN Hui. Assessment of groundwater quality and human health risk (HHR) evaluation of nitrate in the central-western Guanzhong Basin,China[J]. International Journal of Environmental Research and Public Health,2019,16(21):4246. doi:  10.3390/ijerph16214246
    [27] 魏晓鸥. 柳林泉域岩溶地下水水文地球化学形成演化规律[D]. 太原: 太原理工大学, 2013

    WEI Xiaoou. Hydrochemical formation and evolution of the karstic groundwater in Liulin Spring catchment[D]. Taiyuan: Taiyuan University of Technology, 2013. (in Chinese with English abstract)
    [28] ZANG Hongfei,ZHENG Xiuqing,JIA Zhenxing,et al. The impact of hydrogeochemical processes on karst groundwater quality in arid and semiarid area:A case study in the Liulin Spring area,North China[J]. Arabian Journal of Geosciences,2015,8:6507 − 6519. doi:  10.1007/s12517-014-1679-1
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  161
  • HTML全文浏览量:  150
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-23
  • 修回日期:  2022-05-26
  • 网络出版日期:  2023-05-16
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回