ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD 收录期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电阻率法的充填裂隙-基质中盐热运移试验研究

丁瑞 邓亚平 钱家忠 杨賾 马雷

丁瑞,邓亚平,钱家忠,等. 基于电阻率法的充填裂隙-基质中盐热运移试验研究[J]. 水文地质工程地质,2023,50(1): 51-59 doi:  10.16030/j.cnki.issn.1000-3665.202111055
引用本文: 丁瑞,邓亚平,钱家忠,等. 基于电阻率法的充填裂隙-基质中盐热运移试验研究[J]. 水文地质工程地质,2023,50(1): 51-59 doi:  10.16030/j.cnki.issn.1000-3665.202111055
DING Rui, DENG Yaping, QIAN Jiazhong, et al. An experimental study of salt/heat transport in a fracture-matrix system based on the resistivity method[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 51-59 doi:  10.16030/j.cnki.issn.1000-3665.202111055
Citation: DING Rui, DENG Yaping, QIAN Jiazhong, et al. An experimental study of salt/heat transport in a fracture-matrix system based on the resistivity method[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 51-59 doi:  10.16030/j.cnki.issn.1000-3665.202111055

基于电阻率法的充填裂隙-基质中盐热运移试验研究

doi: 10.16030/j.cnki.issn.1000-3665.202111055
基金项目: 国家自然科学基金项目(41831289;42072276);中央高校基本科研费专项资助项目(JZ2021HGTA0170)
详细信息
    作者简介:

    丁瑞(1997-),男,硕士研究生,主要从事水文地质研究。E-mail:2019110644@mail.hfut.edu.cn

    通讯作者:

    钱家忠(1968-),男,教授,博士生导师,主要从事基岩裂隙水非达西流和非费克运移理论等领域的研究。E-mail:qianjiazhong@hfut.edu.cn

  • 中图分类号: P641.2

An experimental study of salt/heat transport in a fracture-matrix system based on the resistivity method

  • 摘要: 为探究盐、热示踪剂在裂隙-基质中示踪的有效性,设计了充填裂隙-基质试验模型,开展了不同示踪剂下的试验,结合不同测点的实时动态电阻率监测数据,研究充填裂隙-基质中示踪剂运移过程,并讨论基于电阻率法的盐、热示踪的有效性结果表明:(1)电阻率法可以揭示 3 种不同示踪剂注入充填裂隙-基质系统的过程以及裂隙-基质系统中裂隙的存在;(2)盐热示踪剂下裂隙与基质内的体积电导率变化率差异最为显著;(3)质量浓度与体积电导率拟合效果要优于温度与体积电导率拟合效果。这说明了基于电阻率法的示踪剂对刻画裂隙-基质中裂隙与基质位置的有效性,且盐热联合示踪剂效果最好。数据成果对野外电法勘探裂隙位置及其他非均质地层构造研究具有一定的参考价值。
  • 图  1  试验装置示意图

    Figure  1.  Schematic diagram test device

    图  2  不同温度自来水和常温下(25 °C)不同质量浓度NaCl溶液的电导率

    Figure  2.  Conductivity of tap water at different temperatures and NaCl solution at different concentrations at room temperature (25 °C)

    图  3  九组试验电阻率反演结果

    Figure  3.  Resistivity inversion results of nine groups of tests

    图  4  30~40目填充基质取样点体积电导率随时间的变化

    Figure  4.  Change of volume conductivity with time at sampling point under 30~40 sand filled matrix

    图  5  30~40目填充基质在不同示踪剂下体积电导率值变化率随深度的变化

    Figure  5.  Change rate of volume conductivity value with depth of 30~40 sand filled matrix under different tracers

    图  6  30~40目填充基质取样点温度/质量浓度与体积电导率的关系

    Figure  6.  Scatter plot of sample temperature/concentration and volume conductivity in a 30~40 sand filled matrix

    表  1  材料参数表

    Table  1.   Parameters of materials

    平均粒径/mm真密度/(g·cm−3孔隙率/%渗透系数/(m·s−1石英砂类别[28]
    3.0002.52535.5×10−4粗砂(6~7目)
    0.2702.68488.9×10−6细砂(30~40目)
    0.1282.67424.8×10−7特细砂
    (80~100目)
    0.0922.74384.2×10−8特细砂(140~160目)
    下载: 导出CSV

    表  2  盐热示踪试验的参数设置

    Table  2.   Parameters setting for thermal and solute tracer experiments

    基质填充试验示踪剂温度/°C质量浓度/(g·L−1电导率/(μS·cm−1
    30~40目1800220
    22512 017
    3盐热8012 532
    80~100目4800228
    52512 011
    6盐热8012 492
    140~160目7800218
    82512 023
    9盐热8012 562
    下载: 导出CSV
  • [1] 王月,安达,席北斗,等. 某基岩裂隙水型危险废物填埋场地下水污染特征分析[J]. 环境化学,2016,35(6):1196 − 1202. [WANG Yue,AN Da,XI Beidou,et al. Groundwater pollution characteristics of the hazardous waste landfill built upon bedrock fissure water[J]. Environmental Chemistry,2016,35(6):1196 − 1202. (in Chinese with English abstract)
    [2] 姜宝良,陈宁宁,李小建,等. 河南某大型裂隙岩溶水源地地下水位动态分析[J]. 水文地质工程地质,2021,48(2):37 − 43. [JIANG Baoliang,CHEN Ningning,LI Xiaojian,et al. A dynamic analysis of groundwater levels in a large fractured-karst groundwater wellfield in Henan[J]. Hydrogeology & Engineering Geology,2021,48(2):37 − 43. (in Chinese with English abstract) doi:  10.16030/j.cnki.issn.1000-3665.202007046
    [3] 王礼恒,李国敏,董艳辉. 裂隙介质水流与溶质运移数值模拟研究综述[J]. 水利水电科技进展,2013,33(4):84 − 88. [WANG Liheng,LI Guomin,DONG Yanhui. Review of numerical simulation of flow and solute transport in fractured media[J]. Advances in Science and Technology of Water Resources,2013,33(4):84 − 88. (in Chinese with English abstract) doi:  10.3880/j.issn.1006-7647.2013.04.020
    [4] 陶同康. 充填裂隙水流特性研究[J]. 水利水运科学研究,1995(1):23 − 32. [TAO Tongkang. On flow property of filling fractures[J]. Journal of Nanjing Hydraulic Research Institute,1995(1):23 − 32. (in Chinese with English abstract)
    [5] 牛子豪,束龙仓,林欢,等. 不同补给条件下裂隙-管道介质间水流交换的示踪试验研究[J]. 水文地质工程地质,2017,44(3):6 − 11. [NIU Zihao,SHU Longcang,LIN Huan,et al. Experimental study of water quantity exchange between fissures and sinkholes under different recharge modes in the fissure-conduit media[J]. Hydrogeology & Engineering Geology,2017,44(3):6 − 11. (in Chinese with English abstract) doi:  10.16030/j.cnki.issn.1000-3665.2017.03.02
    [6] PTAK T. Tracer tests for the investigation of heterogeneous porous media and stochastic modelling of flow and transport:A review of some recent developments[J]. Journal of Hydrology,2004,294(1/2/3):122 − 163.
    [7] GARDIEN C J, POPE G A, HILL A D. Hydraulic fracture diagnosis using chemical tracers[C]//SPE Annual Technical Conference and Exhibition. Denver, Colorado. Society of Petroleum Engineers, 1996, 36675: 925-932.
    [8] ELAHI S H,JAFARPOUR B. Dynamic fracture characterization from tracer-test and flow-rate data with ensemble Kalman filter[J]. SPE Journal,2018,23(2):449 − 466. doi:  10.2118/189449-PA
    [9] 符韵梅,董艳辉,徐志方,等. 分布式光纤温度示踪识别裂隙地下水流动研究进展[J]. 水利水电科技进展,2020,40(3):86 − 94. [FU Yunmei,DONG Yanhui,XU Zhifang,et al. Advances of DTS-based heat tracer tests in characterization of groundwater flow in fractured media[J]. Advances in Science and Technology of Water Resources,2020,40(3):86 − 94. (in Chinese with English abstract) doi:  10.3880/j.issn.1006-7647.2020.03.014
    [10] DANN R L,CLOSE M E,PANG L,et al. Complementary use of tracer and pumping tests to characterize a heterogeneous channelized aquifer system in New Zealand[J]. Hydrogeology Journal,2008,16(6):1177 − 1191. doi:  10.1007/s10040-008-0291-4
    [11] KLEPIKOVA M V,LE BORGNE T,BOUR O,et al. Heat as a tracer for understanding transport processes in fractured media:Theory and field assessment from multiscale thermal push-pull tracer tests[J]. Water Resources Research,2016,52(7):5442 − 5457. doi:  10.1002/2016WR018789
    [12] QIAN Jiazhong. Experimental study of solute transport under non-Darcian flow in a single fracture[J]. Journal of Hydrology,2011,399(3/4):246 − 254.
    [13] 金爱芳,刘磊,殷秀兰. 不同勘探方法在丰水期和枯水期岩溶塌陷探测效果分析研究[J]. 水文地质工程地质,2022,49(6):171 − 178. [JIN Aifang,LIU Lei,YIN Xiulan. Studies on effect analysis of different exploration methods for karst collapse detection in the periods of rainy and dry seasons[J]. Hydrogeology & Engineering Geology,2022,49(6):171 − 178. (in Chinese with English abstract)
    [14] 朱建友,邓亚平,施小清,等. 高密度电阻率法探测DNAPLs污染的适宜性探讨[J]. 水文地质工程地质,2017,44(1):144 − 151. [ZHU Jianyou,DENG Yaping,SHI Xiaoqing,et al. Discussion on the suitability of electrical resistivity tomography method to detect DNAPLs contaminantion[J]. Hydrogeology & Engineering Geology,2017,44(1):144 − 151. (in Chinese with English abstract) doi:  10.16030/j.cnki.issn.1000-3665.2017.01.22
    [15] 齐信,黎清华,张再天,等. 海南省琼中县花岗岩地区含水层电性特征及地下水赋存规律[J]. 地质通报,2021,40(6):1001 − 1009. [QI Xin,LI Qinghua,ZHANG Zaitian,et al. Electrical characteristics and storage rules of groundwater in granite area of Qiongzhong County,Hainan Province[J]. Geological Bulletin of China,2021,40(6):1001 − 1009. (in Chinese with English abstract) doi:  10.12097/j.issn.1671-2552.2021.06.015
    [16] 范雨霏,潘保芝,郭宇航,等. 利用数字岩心技术评价含黏土砂岩导电模型[J]. 吉林大学学报(地球科学版),2021,51(3):919 − 926. [FAN Yufei,PAN Baozhi,GUO Yuhang,et al. Evaluate electrical conductivity models of clay-bearing sandstones by digital core technology[J]. Journal of Jilin University (Earth Science Edition),2021,51(3):919 − 926. (in Chinese with English abstract)
    [17] KEMNAA A,JAN VANDERBORGHTA J,KULESSA B,et al. Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models[J]. Journal of Hydrology,2002,267(3/4):125 − 146.
    [18] KOESTEL J,KEMNA A,JAVAUX M,et al. Quantitative imaging of solute transport in an unsaturated and undisturbed soil monolith with 3-D ERT and TDR[J]. Water Resources Research,2008,44(12):W12411.
    [19] HAYLEY K,BENTLEY L R,GHARIBI M,et al. Low temperature dependence of electrical resistivity:Implications for near surface geophysical monitoring[J]. Geophysical Research Letters,2007,34(18):L18402.
    [20] GIORDANO N, ARATO A, COMINA C, et al. Time-lapse electrical resistivity imaging of the thermally affected zone of a borehole thermal energy storage system near Torino(Northern Italy)[J]. Journal of Applied Geophysics,2017,140:123 − 134.
    [21] 孟银生,张光之,刘瑞德. 电阻率参数预测地热田深部温度方法技术研究[J]. 物探化探计算技术,2010,32(1):31 − 34. [MENG Yinsheng,ZHANG Guangzhi,LIU Ruide. The deep temperature prediction by resistivity in exploration of the geothermal field system[J]. Computing Techniques for Geophysical and Geochemical Exploration,2010,32(1):31 − 34. (in Chinese with English abstract) doi:  10.3969/j.issn.1001-1749.2010.01.006
    [22] 孙红亮. 高密度电阻率法延时性勘探的研究与实践[D]. 成都: 成都理工大学, 2008

    SUN Hongliang. A study on the electrical imaging time-delay surveys[D]. Chengdu: Chengdu University of Technology, 2008. (in Chinese with English abstract)
    [23] 郑智杰,曾洁,甘伏平. 装置和电极距对岩溶管道高密度电法响应特征的影响研究[J]. 水文地质工程地质,2016,43(5):161 − 165. [ZHENG Zhijie,ZENG Jie,GAN Fuping. Research on the effect of device and electrode distance on the characteristics of high-density resistivity method in karst pipeline[J]. Hydrogeology & Engineering Geology,2016,43(5):161 − 165. (in Chinese with English abstract) doi:  10.16030/j.cnki.issn.1000-3665.2016.05.24
    [24] YANG Ze,DENG Yaping,QIAN Jiazhong,et al. Characterizing temporal behavior of a thermal tracer in porous media by time-lapse electrical resistivity measurements[J]. Hydrogeology Journal,2021,29(3):1173 − 1188. doi:  10.1007/s10040-021-02307-1
    [25] 涂羽娇,王波,冯荣,等. 堆积石英砂导热性能研究[J]. 硅酸盐通报,2015,34(12):3492 − 3497. [TU Yujiao,WANG Bo,FENG Rong,et al. Thermal conductivity of accumulated quartz sand[J]. Bulletin of the Chinese Ceramic Society,2015,34(12):3492 − 3497. (in Chinese with English abstract)
    [26] 李刚,李超,李小森,等. 石英砂中甲烷水合物渗透率实验与模型验证[J]. 天然气工业,2017,37(12):53 − 60. [LI Gang,LI Chao,LI Xiaosen,et al. The permeability experiment on the methane hydrate in quartz sands and its model verification[J]. Natural Gas Industry,2017,37(12):53 − 60. (in Chinese with English abstract) doi:  10.3787/j.issn.1000-0976.2017.12.008
    [27] LI Xianjie,SONG Xinwang,YUE Xiang’an,et al. Effects of shear fracture on in-depth profile modification of weak gels[J]. Petroleum Science,2007,4(1):55 − 60. doi:  10.1007/BF03186574
    [28] 中华人民共和国建设部. 普通混凝土用砂、石质量及检验方法标准: JGJ 52—2006[S]. 北京: 中国建筑工业出版社, 2007

    Ministry of Construction of the People’s Republic of China. Standard for technical requirements and test method of sand and crushed stone (or gravel) for ordinary concrete: JGJ 52—2006[S]. Beijing: China Architecture & Building Press, 2007. (in Chinese)
    [29] 陈丽梅,程敏熙,肖晓芳,等. 盐溶液电导率与浓度和温度的关系测量[J]. 实验室研究与探索,2010,29(5):39 − 42. [CHEN Limei,CHENG Minxi,XIAO Xiaofang,et al. Measurement of the relationship between conductivity of salt solution and concentration and temperature[J]. Research and Exploration in Laboratory,2010,29(5):39 − 42. (in Chinese with English abstract) doi:  10.3969/j.issn.1006-7167.2010.05.012
    [30] HERMANS T,NGUYEN F,ROBERT T,et al. Geophysical methods for monitoring temperature changes in shallow low enthalpy geothermal systems[J]. Energies,2014,7(8):5083 − 5118. doi:  10.3390/en7085083
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  63
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-19
  • 修回日期:  2022-01-07
  • 网络出版日期:  2023-01-13
  • 刊出日期:  2023-01-13

目录

    /

    返回文章
    返回