ISSN 1000-3665 CN 11-2202/P
    郭伟, 王晨辉, 李鹏, 孟庆佳. 基于LoRa的地质灾害分布式实时监测系统设计[J]. 水文地质工程地质, 2020, 47(4): 107-113. DOI: 10.16030/j.cnki.issn.1000-3665.202003061
    引用本文: 郭伟, 王晨辉, 李鹏, 孟庆佳. 基于LoRa的地质灾害分布式实时监测系统设计[J]. 水文地质工程地质, 2020, 47(4): 107-113. DOI: 10.16030/j.cnki.issn.1000-3665.202003061
    GUOWei, . Design of the distributed real-time monitoring system for geological hazards based on LoRa[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 107-113. DOI: 10.16030/j.cnki.issn.1000-3665.202003061
    Citation: GUOWei, . Design of the distributed real-time monitoring system for geological hazards based on LoRa[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 107-113. DOI: 10.16030/j.cnki.issn.1000-3665.202003061

    基于LoRa的地质灾害分布式实时监测系统设计

    Design of the distributed real-time monitoring system for geological hazards based on LoRa

    • 摘要: 针对我国西南岩溶山区地质灾害监测与数据传输困难的问题,利用微电子、无线通信及控制策略优化技术,提出了一种基于远距离无线电(Long Range Radio,LoRa)的地质灾害分布式实时监测系统的设计方案。该方案以低功耗嵌入式微控制器STM32L071和基于LoRa的SX1278无线通信模块为核心,采用星型拓扑结构进行自组网设计,构建了通信距离较远、数据传输稳定的监测硬件系统。同时加入智能化软件控制技术,解决了野外设备功耗与实时性的矛盾,实现了对灾害体多种监测参数的实时采集和传输。通过野外试验对设备的传输稳定性和实时性进行分析,试验结果表明:在4个月的试验周期中,设备在数据传输过程中收包率达到92%以上,在监测到灾害体变化时数据采集实时性达到秒级。该系统具有功耗低、不受地貌限制、通信稳定等技术特点,可以有效解决复杂山区地质灾害监测困难的问题。

       

      Abstract: For the difficulty of monitoring and data transmission of geological hazards in the karst mountainous areas of southwest China, a new design scheme of a distributed real-time monitoring system for geological hazards based on LoRa is proposed, in which the microelectronics, wireless communication and control strategy optimization technologyare employed. The system uses the low-power embedded microcontroller STM32L071 and lora-based SX1278 wireless communication module as the core, adopts the star topology structure to design a self-organizing network, and constructs a monitoring hardware system with a long communication distance and stable data transmission. The system also adds the intelligent software control technology to solve the contradiction between power consumption and real-time performance of field equipment. Finally, the real-time acquisition and transmission of multiple monitoring parameters of a disaster body is realized. The field test was conducted to analyze the transmission stability and real-time performance of the equipment. The test results show that in a 4-month experiment period, the equipment’s packet acceptance rate reaches more than 92% in the data transmission process, and the real-time performance of data collection reaches the second level when the disaster body changes are detected. This system has the technical characteristics of low power consumption, unrestricted landform and stable communication. It can effectively solve the difficult problem of monitoring geological disasters in the complex mountainous areas.

       

    /

    返回文章
    返回