ISSN 1000-3665 CN 11-2202/P

    松嫩盆地硝氮驱动的地下水铀富集机理

    Mechanism of nitrate-driven groundwater uranium enrichment in the Songnen Basin

    • 摘要:
      目的 氮素污染导致的地下水重金属次生污染是当前研究的重点和热点。论文旨在探究地下水中硝氮的分布、来源及其对地下水铀迁移转化的控制机制。
      方法 本研究综合采用水化学、\mathrmNO_3^- 氮氧同位素及水文地球化学模拟的方法,探究了松嫩盆地西部山前倾斜平原地下水中\mathrmNO_3^- 来源、转化及其驱动的地下水铀富集过程。
      结果 研究区地下水沿流向逐渐由氧化环境演变至还原环境,氧化区地下水铀质量浓度(平均14.2 μg/L)显著高于还原区(平均4.1 μg/L);氧化区地下水\mathrmNO_3^- 平均质量浓度高达188 mg/L,还原区普遍低于10 mg/L。\mathrmNO_3^- 氮氧同位素结果表明:氧化区地下水\mathrmNO_3^- 主要来自土壤\mathrmNH_4^+ 及\mathrmNH_4^+ 氮肥的硝化作用;而在还原区则主要来自\mathrmNO_3^- 氮肥的输入。
      结论 氧化区高浓度的\mathrmNO_3^- 一方面将固态U(IV)氧化为溶解态U(VI),另一方面通过驱动碳酸盐岩风化导致Ca-U-CO3三元络合物的形成,进一步促进了地下水铀的富集;还原区主要发生硅酸盐岩风化及Ca2+与Na+离子交换过程,地下水氧化还原电位和Ca2+浓度均较低,不利于地下水铀的富集。本研究对于理解地下水\mathrmNO_3^- 污染导致的次生铀浓度超标具有重要的理论意义。

       

      Abstract:
      Objectives Nitrogen pollution-induced secondary contamination of heavy metals in groundwater is a current focal point and hot topic of research. The study aims to investigate the distribution and sources of \mathrmNO_3^- in groundwater, as well as its controlling mechanisms on uranium (U) migration and transformation in groundwater.
      Methods This study comprehensively employed hydrogeochemical analysis, \mathrmNO_3^- nitrogen and oxygen isotopes, and hydrogeochemical modeling to investigate the sources and transformation processes of \mathrmNO_3^- , and the relevant driving mechanism on U enrichment in groundwater from the western piedmont plain of the Songnen Basin.
      Results The results indicate that the groundwater in the study area gradually evolves from an oxidizing environment to a reducing environment along the groundwater flow path. The average U concentration (14.2 μg/L) in the oxic zone is significantly higher than that in the anoxic zone (4.1 μg/L). The average concentration of \mathrmNO_3^- in the groundwater of the oxic zone is as high as 188 mg/L, while it is generally below 10 mg/L in the anoxic zone. The results of \mathrmNO_3^- nitrogen and oxygen isotopes suggest that \mathrmNO_3^- in groundwater from the oxic zone mainly originates from the nitrification of soil \mathrmNH_4^+ and NH4 fertilizers, while it primarily comes from the input of \mathrmNO_3^- fertilizers in the anoxic zone.
      Conclusion In the oxic zone, high concentration of \mathrmNO_3^- not only oxidizes solid U(IV) to soluble U(VI) but also promotes the formation of Ca-U-CO3 ternary complexes through the weathering of carbonate rocks, thereby further promoting the enrichment of U in groundwater. In the anoxic zone, the main processes are the weathering of silicate minerals and the cation exchange between Ca2+ and Na+. The groundwater redox potential (ORP) and Ca2+ concentrations are both low in the anoxic zone, which are not conducive to the enrichment of U in groundwater. This study poses considerable theoretical importance for understanding the secondary U contamination in groundwater caused by \mathrmNO_3^- pollution.

       

    /

    返回文章
    返回