ISSN 1000-3665 CN 11-2202/P
  • Included in Scopus
  • Included in DOAJ
  • Included in WJCI Report
  • Chinese Core Journals
  • The Key Magazine of China Technology
  • Included in CSCD
Wechat
Volume 50 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
ZHANG Xingzhou, YIN Leyi, CHEN Jian, et al. A study of the multi-tiered risk assessment method of site groundwater contamination considering transport-induced risk[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 160-170 doi:  10.16030/j.cnki.issn.1000-3665.202209006
Citation: ZHANG Xingzhou, YIN Leyi, CHEN Jian, et al. A study of the multi-tiered risk assessment method of site groundwater contamination considering transport-induced risk[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 160-170 doi:  10.16030/j.cnki.issn.1000-3665.202209006

A study of the multi-tiered risk assessment method of site groundwater contamination considering transport-induced risk

doi: 10.16030/j.cnki.issn.1000-3665.202209006
  • Received Date: 2022-09-02
  • Rev Recd Date: 2022-11-07
  • Available Online: 2023-02-17
  • Publish Date: 2023-03-15
  • Contaminants in groundwater can spread downstream, causing risks to receptors along the path. The risk assessment of our current site groundwater contamination focuses mainly on human health risks. It rarely considers integrated risks of groundwater contamination, particularly neglecting risks to recepters at downstream locations. This study constructs a new index system and a tiered risk assessment approach for site groundwater contamination based on the “source-pathway-receptor” model considering risks to downstream receptors. For the construction of the index system, the source, pathway and receptor of site groundwater contamination are considered. For the risk assessment approach, a multi-tiered risk assessment are determined according to site groundwater contamination status. Based on the hypothetical case study of a chromium-contaminated site, four scenarios of groundwater contamination states are set. The spatio-temporal changes of groundwater contamination plumes are calculated by using the Wexler solute transport model, and risk assessment is carried out for different states of the groundwater contamination. The results show that in the two cases where the site groundwater contamination plumes have not reached the site boundary, the risk scores of the site groundwater are 4 and 6.2 points, respectively. The risk of the site groundwater at the two contamination states is low and medium, respectively. In the two cases where the site groundwater contamination plumes have arrived or exceeded the site boundary, the risk scores of the site groundwater are 7.0 and 8.8 points, respectively. The corresponding risk at the two contamination states is medium and high, respectively. It can be seen that this new method can comprehensively assess the potential level of harm of groundwater contamination to both human health and ecological environment, and therefore can provide technical support for the management of contaminated sites.
  • loading
  • [1]
    张保会,王林芳,郭宏,等. 我国污染场地修复决策系统研究进展[J]. 环境与可持续发展,2021,46(2):138 − 143. [ZHANG Baohui,WANG Linfang,GUO Hong,et al. Progress of the research on the decision system of contaminated site restoration in China[J]. Environment and Sustainable Development,2021,46(2):138 − 143. (in Chinese with English abstract)
    [2]
    车均,张蕾. 地下水污染控制与修复的研究[J]. 资源节约与环保,2014(3):136. [CHE Jun,ZHANG Lei. Study on groundwater pollution control and remediation[J]. Resources Economization & Environmental Protection,2014(3):136. (in Chinese with English abstract) doi:  10.16317/j.cnki.12-1377/x.2014.03.096
    [3]
    中华人民共和国生态环境部. 建设用地土壤污染风险评估技术导则: HJ 25.3—2019[S]. 北京: 中国环境环境科学出版社, 2019

    Ministry of Ecology and Environment of the People’s Republic of China. Technical guidelines for risk assessment of soil contamination of land for construction: HJ 25.3—2019[S]. Beijing: China Environment Publishing Group, 2019. (in Chinese)
    [4]
    王超,李辉林,胡清,等. 我国土壤环境的风险评估技术分析与展望[J]. 生态毒理学报,2021,16(1):28 − 42. [WANG Chao,LI Huilin,HU Qing,et al. Analysis and prospects on soil environmental risk assessment technology in China[J]. Asian Journal of Ecotoxicology,2021,16(1):28 − 42. (in Chinese with English abstract)
    [5]
    董敏刚,张建荣,罗飞,等. 我国南方某典型有机化工污染场地土壤与地下水健康风险评估[J]. 土壤,2015,47(1):100 − 106. [DONG Mingang,ZHANG Jianrong,LUO Fei,et al. Health risk assessment of soil and groundwater for A typical organic chemical contaminated site in Southern China[J]. Soils,2015,47(1):100 − 106. (in Chinese with English abstract) doi:  10.13758/j.cnki.tr.2015.01.016
    [6]
    苏安琪,韩璐,晏井春,等. 基于保护健康和水环境的氯代烃类污染场地地下水风险评估[J]. 环境工程,2018,36(7):138 − 143. [SU Anqi,HAN Lu,YAN Jingchun,et al. Risk assessment of chlorinated solvents in groundwater based on health and water environment[J]. Environmental Engineering,2018,36(7):138 − 143. (in Chinese with English abstract) doi:  10.13205/j.hjgc.201807028
    [7]
    雷廷. 基于溶质运移的地下水有机污染健康风险评价方法研究[D]. 北京: 中国地质科学院, 2014

    LEI Ting. Research on health risk assessment method of organic pollution in groundwater based on solute transport[D]. Beijing: Chinese Academy of Geological Sciences, 2014. (in Chinese with English abstract)
    [8]
    中华人民共和国生态环境部. 地下水污染健康风险评估工作指南: 环办土壤函[2019]770号[S]. 2019

    Ministry of Land and Resources of the People’s Republic of China. Guidelines for health risk assessment of groundwater pollution: [2019]770[S]. 2019. (in Chinese)
    [9]
    骆永明,滕应. 中国土壤污染与修复科技研究进展和展望[J]. 土壤学报,2020,57(5):1137 − 1142. [LUO Yongming,TENG Ying. Research progresses and prospects on soil pollution and remediation in China[J]. Acta Pedologica Sinica,2020,57(5):1137 − 1142. (in Chinese with English abstract)
    [10]
    USEPA. addition of a subsurface intrusion component to the hazard ranking system: 40 CFR 300[S]. Washington: Federal Register, 2017.
    [11]
    CCME. National classification system for contaminated sites[R]. Winnipeg: Canadian Council of Ministers of the Environment, 2008.
    [12]
    DARMENDRAIL D. The French approach to contaminated-land management. Revision 1[EB/OL]. France: BRGM, 2003(2007-12-31)[2022-10-30]. http://infoterre.brgm.fr /rapports/RP-52276-FR.pdf.
    [13]
    徐亚,刘景财,刘玉强,等. 基于Monte Carlo方法的污染场地风险评价及不确定性研究[J]. 环境科学学报,2014,34(6):1579 − 1584. [XU Ya,LIU Jingcai,LIU Yuqiang,et al. Quantification of uncertainty in evaluating the health risk of a contaminated site based on Monte Carlo method[J]. Acta Scientiae Circumstantiae,2014,34(6):1579 − 1584. (in Chinese with English abstract)
    [14]
    国家质量监督检验检疫总局, 中国国家标准化管理委员会. 地下水质量标准: GB/T 14848—2017[S]. 北京: 中国标准出版社, 2017

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Standard for groundwater quality: GB/T 14848—2017[S]. Beijing: Standards Press of China, 2017. (in Chinese)
    [15]
    中华人民共和国生态环境部. 饮用水水源保护区划分技术规范: HJ 338—2018[S]. 北京: 中国环境环境科学出版社, 2018

    Ministry of Ecology and Environment of the People’s Republic of China. Technical guidelines for delineating source water protection areas: HJ 338—2018[S]. Beijing: China Environmental Science Press, 2018. (in Chinese)
    [16]
    刘玲,陈坚,牛浩博,等. 基于FEFLOW的三维土壤-地下水耦合铬污染数值模拟研究[J]. 水文地质工程地质,2022,49(1):164 − 174. [LIU Ling,CHEN Jian,NIU Haobo,et al. Numerical simulation of three-dimensional soil-groundwater coupled chromium contamination based on FEFLOW[J]. Hydrogeology & Engineering Geology,2022,49(1):164 − 174. (in Chinese with English abstract) doi:  10.16030/j.cnki.issn.1000-3665.202102008
    [17]
    SANGANI J,SRIVASTAVA A,SRINIVASAN V. Analytical solutions to three-dimensional reactive contaminant transport problems involving point,line,and area sources[J]. Transport in Porous Media,2022,144(3):641 − 667. doi:  10.1007/s11242-022-01828-x
    [18]
    SUÁREZ-SOTO, ANDERSON, MASLIA, et al. A comparison between BIOCHLOR and the analytical contaminant transport analysis system (ACTS) for a case study in coastal Georgia[C]//World Environmental and Water Resources Congress 2008. Reston: American Society of Civil Engineers, 2008: 1 − 10.
    [19]
    WEXLER E J. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow[M]. Denver, CO: Dept. of the Interior, U. S. Geological Survey, 1989.
    [20]
    王嘉瑜,蒲生彦,胡玥,等. 地下水污染风险预警等级及阈值确定方法研究综述[J]. 水文地质工程地质,2020,47(2):43 − 50. [WANG Jiayu,PU Shengyan,HU Yue,et al. Review on the determination methods for early warning grade and threshold of groundwater pollution risk[J]. Hydrogeology & Engineering Geology,2020,47(2):43 − 50. (in Chinese with English abstract) doi:  10.16030/j.cnki.issn.1000-3665.201907044
    [21]
    中华人民共和国生态环境部. 污染地块土壤环境管理办法(试行)[EB/OL].(2016-12-31). [2022-09-02]. https://www.mee.gov.cn/gkml/hbb/bl/201701/t20170118_394953.htm.

    Ministry of Ecology and Environment of the People’s Republic of China. Measures for soil environment management of contaminated land plots (Trial)[EB/OL]. (2016-12-31). [2022-09-02]. https://www.mee.gov.cn/gkml/hbb/bl/201701/t20170118_394953.htm. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (264) PDF downloads(130) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return