ISSN 1000-3665 CN 11-2202/P
  • Included in Scopus
  • Included in DOAJ
  • Included in WJCI Report
  • Chinese Core Journals
  • The Key Magazine of China Technology
  • Included in CSCD
Wechat
Volume 50 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
ZHANG Li, ZHAO Yongsheng. Experimental research on the injectable xanthan gum gel intercepting barrier of simulated Cr(VI) contaminated aquifer[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 171-177 doi:  10.16030/j.cnki.issn.1000-3665.202112043
Citation: ZHANG Li, ZHAO Yongsheng. Experimental research on the injectable xanthan gum gel intercepting barrier of simulated Cr(VI) contaminated aquifer[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 171-177 doi:  10.16030/j.cnki.issn.1000-3665.202112043

Experimental research on the injectable xanthan gum gel intercepting barrier of simulated Cr(VI) contaminated aquifer

doi: 10.16030/j.cnki.issn.1000-3665.202112043
  • Received Date: 2021-12-21
  • Rev Recd Date: 2022-03-05
  • Available Online: 2023-03-14
  • Publish Date: 2023-03-15
  • Due to the unreasonable discharge of industrial waste, a large amount of heavy metal pollutant Cr(VI) enters the underground environment, which seriously threatens human health and ecological environment. The high mobility of Cr(VI) in groundwater environment makes it difficult to repair. A green, economic and effective interception method is urgently needed to improve the ability of groundwater Cr(VI) pollution control. In this paper, sodium metabisulfite is selected as a reducing agent, and Cr3+ generated from Cr(VI) in groundwater is used as an xanthan gum crosslinking agent to form a gel blocking barrier. The influences of various components on gel time and viscosity changes and the blocking effect of gel barrier on aquifer are studied. The results indicate that (1) in the system with Cr(VI) concentration up to 200 mg/L, xanthan gum solution with 0.4% mass concentration can form gel with certain mechanical strength within 1.5 h. (2) The gel has salt resistance and is suitable for common aquifers. Na+ and K+ of 2.5−5 g/L can promote the gel. (3) The injected gel blocking barrier can significantly reduce the coefficient of permeability of medium sand media to 1×10−7 cm/s, which can meet the demand of groundwater blocking. Injection-type gel barriers are formed without the introduction of harmful substances. After the interception, injection-type gel barriers can be naturally degraded by biological action without long-term changes under the aquifer hydraulic conditions. This study provides a theoretical basis for the construction of gel barrier in chromium contaminated groundwater.
  • loading
  • [1]
    DHAL B,THATOI H N,DAS N N,et al. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste:A review[J]. Journal of Hazardous Materials,2013,250/251:272 − 291. doi:  10.1016/j.jhazmat.2013.01.048
    [2]
    ZHAO Fangjie,MA Yibing,ZHU Yongguan,et al. Soil contamination in China:Current status and mitigation strategies[J]. Environmental Science & Technology,2015,49(2):750 − 759.
    [3]
    张进德,田磊,裴圣良. 矿山水土污染与防治对策研究[J]. 水文地质工程地质,2021,48(2):157 − 163. [ZHANG Jinde,TIAN Lei,PEI Shengliang. A discussion of soil and water pollution and control countermeasures in mining area of China[J]. Hydrogeology & Engineering Geology,2021,48(2):157 − 163. (in Chinese with English abstract) doi:  10.16030/j.cnki.issn.1000-3665.202003031
    [4]
    王晟,冯翔,李兵,等. 多种铁改性和未改性生物炭对模拟地下水中六价铬的去除[J]. 吉林大学学报(地球科学版),2021,51(1):247 − 255. [WANG Sheng,FENG Xiang,LI Bing,et al. Removal of hexavalent chromium from simulated groundwater by variety of iron-modified and unmodified biochars[J]. Journal of Jilin University (Earth Science Edition),2021,51(1):247 − 255. (in Chinese with English abstract)
    [5]
    WU Yihan,PANG Hongwei,LIU Yue,et al. Environmental remediation of heavy metal ions by novel-nanomaterials:A review[J]. Environmental Pollution,2019,246:608 − 620. doi:  10.1016/j.envpol.2018.12.076
    [6]
    ZOU Yidong,WANG Xiangxue,KHAN A,et al. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions:A review[J]. Environmental Science & Technology,2016,50(14):7290 − 7304.
    [7]
    LIU Lianwen,LI Wei,SONG Weiping,et al. Remediation techniques for heavy metal-contaminated soils:Principles and applicability[J]. Science of the Total Environment,2018,633:206 − 219. doi:  10.1016/j.scitotenv.2018.03.161
    [8]
    ZHOU Rui,SUN He,HOU Zhimin,et al. Light transmission method to explore the migration and distribution of Cr(VI) in a sandy aquifer[J]. Environmental Earth Sciences,2018,77(6):255. doi:  10.1007/s12665-018-7435-1
    [9]
    ZHANG Yu,TANG Qiang,SHI Peixin,et al. Influence of bio-clogging on permeability characteristics of soil[J]. Geotextiles and Geomembranes,2021,49(3):707 − 721. doi:  10.1016/j.geotexmem.2020.11.010
    [10]
    PENSINI E,ELSAYED A,MACIAS RODRIGUEZ B,et al. In situ trapping and treating of hexavalent chromium using scleroglucan-based fluids:A proof of concept[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2018,559:192 − 200.
    [11]
    KIM M,CORAPCIOGLU M Y. Gel barrier formation in unsaturated porous media[J]. Journal of Contaminant Hydrology,2002,56(1/2):75 − 98.
    [12]
    KIM M,CORAPCIOGLU M Y. Modeling of gel barrier formation by using colloidal silica in saturated media[J]. Environmental Technology,2003,24(4):517 − 529. doi:  10.1080/09593330309385586
    [13]
    DEHGHAN H,TABARSA A,LATIFI N,et al. Use of xanthan and guar gums in soil strengthening[J]. Clean Technologies and Environmental Policy,2019,21(1):155 − 165. doi:  10.1007/s10098-018-1625-0
    [14]
    SIWIK A,PENSINI E,ELSAYED A,et al. Natural guar,xanthan and carboxymethyl-cellulose-based fluids:Potential use to trap and treat hexavalent chromium in the subsurface[J]. Journal of Environmental Chemical Engineering,2019,7(1):102807. doi:  10.1016/j.jece.2018.11.051
    [15]
    KUMAR S A,SUJATHA E R,PUGAZHENDI A,et al. Guar gum-stabilized soil:A clean,sustainable and economic alternative liner material for landfills[J]. Clean Technologies and Environmental Policy,2021:1 − 19.
    [16]
    ARMISTEAD S J,RAWLINGS A E,SMITH C C,et al. Biopolymer stabilization/solidification of soils:A rapid,micro-macro,cross-disciplinary approach[J]. Environmental Science & Technology,2020,54(21):13963 − 13972.
    [17]
    GIOIA F,CIRIELLO P P. The containment of oil spills in porous media using xanthan/aluminum solutions,gelled by gaseous CO2 or by AlCl3 solutions[J]. Journal of Hazardous Materials,2006,138(3):500 − 506. doi:  10.1016/j.jhazmat.2006.05.095
    [18]
    ZHANG Guicai,CHEN Lifeng,GE Jijiang,et al. Experimental research of syneresis mechanism of HPAM/Cr3+ gel[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2015,483:96 − 103.
    [19]
    REN Liming,WANG Ruoyu,QIN Bing,et al. Enhanced remediation efficiency of Cr(VI)-contaminated heterogeneous aquifers:Improved sweeping efficiency using shear-thinning fluids[J]. Chemosphere,2021,273:129675. doi:  10.1016/j.chemosphere.2021.129675
    [20]
    佟卉,苏程,毛绍祺,等. 油田用铬交联聚合物凝胶研究进展综述[J]. 化学工程师,2021,35(2):43 − 47. [TONG Hui,SU Cheng,MAO Shaoqi,et al. Research progress of chromium cross-linked polymer gel used in oilfield[J]. Chemical Engineer,2021,35(2):43 − 47. (in Chinese with English abstract) doi:  10.16247/j.cnki.23-1171/tq.20210243
    [21]
    GIOIA F,URCIUOLO M. The containment of oil spills in unconsolidated granular porous media using xanthan/Cr(III) and xanthan/Al(III) gels[J]. Journal of Hazardous Materials,2004,116(1/2):83 − 93.
    [22]
    PENSINI E,RODRIGUEZ B M,MARANGONI A G,et al. Shear rheological properties of composite fluids and stability of particle suspensions:Potential implications for fracturing and environmental fluids[J]. The Canadian Journal of Chemical Engineering,2019,97(9):2395 − 2407. doi:  10.1002/cjce.23486
    [23]
    TELEPANICH A,MARSHALL T,GREGORI S,et al. Graphene-alginate fluids as unconventional electrodes for the electrokinetic remediation of Cr(VI)[J]. Water,Air,& Soil Pollution,2021,232(8):334.
    [24]
    李红,孙辉,张冲,等. 焦亚硫酸钠-石灰法处理含铬废水的研究[J]. 辽宁化工,2020,49(6):631 − 633. [LI Hong,SUN Hui,ZHANG Chong,et al. Study on treatment of chromium-containing wastewater by sodium metabisulfite-lime method[J]. Liaoning Chemical Industry,2020,49(6):631 − 633. (in Chinese with English abstract) doi:  10.3969/j.issn.1004-0935.2020.06.008
    [25]
    雷迅,吴咚咚,郑融融,等. 焦亚硫酸钠对电镀废水六价铬和化学需氧量浓度值影响效果的探讨[J]. 当代化工研究,2020(4):131 − 132. [LEI Xun,WU Dongdong,ZHENG Rongrong,et al. Discussion the effect of sodium pyrosulfite to Cr6+ and chemical oxygen demand in the electroplating wastewate[J]. Modern Chemical Research,2020(4):131 − 132. (in Chinese with English abstract) doi:  10.3969/j.issn.1672-8114.2020.04.061
    [26]
    MCCOOL C S,GREEN D W,WILLHITE G P. Fluid/rock interactions between xanthan/chromium(III) gel systems and dolomite core material[J]. SPE Production & Facilities,2000,15(3):159 − 167.
    [27]
    李琴. 地下水污染膨润土/水泥/粘土系原位阻截材料防渗与兼容性能研究[D]. 长春: 吉林大学, 2020.

    LI Qin. Study on containment performance and chemical compatibility of bentonite/cement/clay based in-situ barrier materials for groundwater pollution[D]. Changchun: Jilin University, 2020. (in Chinese with English abstract)
    [28]
    韩慧慧. 利用弱凝胶强化修复试剂在低渗透地层中的迁移研究[D]. 长春: 吉林大学, 2019

    HAN Huihui. Study on enhancing the migration of the remediation agents in low permeability formation by using weak gel[D]. Changchun: Jilin University, 2019. (in Chinese with English abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (74) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return