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Abstract: Groundwater contamination is a global environmental issue that seriously threatens human health and
ecological environment. As an essential component of groundwater ecosystems, microorganisms are involved in a
series of biogeochemical processes through their metabolic reactions, which control the transformation and
transport of contaminants. Numerical simulation of the contaminants transport and transformation is an effective

method to quantitatively describe and predict their behaviors. Understanding and handling the modeling of
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microbial metabolic processes can significantly improve the accuracy of simulation and prediction of contaminants
behaviors in groundwater. Here, this review systematically summarizes the development process of microbial
metabolic activities according to the development timeline and application scales, focusing on the advancement of
next-generation gene sequencing technology to promote numerical simulation research. Meanwhile, this review
analyzes how to construct microbial metabolism models to quantitatively describe the biogeochemical processes
they are involved in, and summarizes the commonly used microbial information databases and simulation
softwares. It is pointed out that the current application of microbial metabolism modeling still faces many
challenges, including verification difficulty, low parameter applicability, data acquisition difficulty, and high
computational demands. Future research should further explore microbial metabolic mechanisms, optimize
microbial metabolic modeling methods, and improve parameters and empirical equations under different demands,

to enhance the accuracy and applicability of models, as well as to solve the issues of microbial-related data

processing and computational precision and efficiency in model establishment.

Keywords: groundwater  contamination;

biogeochemical process; model-data integration
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Fig. 4 Schematic diagram of the FBA method (modified after Ref. [78])
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