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Abstract: Accurate prediction of wave propagation properties in different media is essential for structural design

and material performance evaluation in engineering. Classical elasticity theory has limitations in describing wave
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propagation, particularly when dealing with high-frequency waves and porous media. To address these
shortcomings, this study investigated the transmission and reflection of P-waves on the dividing surface of elastic
and saturated porous media based on the nonlocal elasticity theory. Based on the nonlocal medium theory and
Helmholtz vector decomposition principle, a mathematical model of elastic wave transmission and reflection at the
interlayer interface was established, and the correctness of the model was verified by numerical examples. The
effects of incident frequency, incident angle, single nonlocal parameter, and interlayer nonlocal parameter on the
amplitude ratio of wave transmission and reflection at the interface are analyzed under the nonlocal elastic theory.
The results show that the difference between the amplitude ratios under the two theories gradually increases with
the increase of the incident wave frequency, becoming particularly pronounced at higher frequencies. The
amplitude ratio of the reflected P1 wave presents the least sensitivity to variations in incident angle under both
theories, whereas the other wave types demonstrate comparable angular dependencies, with the maximum
observed amplitude ratio difference reaching 33%. It is worth noting that the transmission and reflection patterns
of waves at the interfaces are regulated by nonlocal parameters, and changes in the nonlocal parameters of the
elastic medium have an extremely weak effect on the amplitude ratio of the transmitted waves. The findings of this
study are of significance for the in-depth understanding of wave propagation behavior at the interfaces of different

media, and provide new theoretical support and analytical tools for engineering applications such as composite

material design, wave propagation prediction, and environmental vibration analysis.

Keywords: nonlocal elasticity theory; porous media; elastic wave; transparent reflection; amplitude ratio
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Fig. 6 Variation curve of amplitude ratio at the interface with the change of non-local parameters between layers
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