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Abstract: It is of great significance to understand the behavior of nutrients in the groundwater seawater mixing
zone (GSMZ) and quantify the input of terrestrial nutrients into the sea. This study focuses on the coastal sandy
beach of Beijin Bay, Guangdong Province. Based on the stratified sampling and analysis of the hydrochemical
composition of coastal groundwater, this study investigated the distribution characteristics, migration, and
transformation of nutrients in coastal groundwater.The submarine groundwater discharge (SGD) and associated

nutrient flux into the sea were also evaluated, exploring the potential environmental impacts on coastal water. The
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results show that compared with surface water, coastal groundwater had higher nutrient content. The
concentrations of nitrate and nitrite (NO;), phosphate (PO;) and silicate (Si) in groundwater gradually decreased
from land to sea and from shallow layer to deep layer. Non-conservative removal of NO_and PO; occurred after
passing through the GSMZ. NO was mainly removed by denitrification reaction, with the concentration
decreasing by 95.81% from land to sea, while PO, was mainly removed primarily by the adsorption to iron
oxide/hydroxide end products. A hotspot of ammonia nitrogen (NH,) was generated in the middle of the aquifer,
and non-conservative addition of NH; occurred, mainly due to the decomposition and release of organic matter.
The estimated SGD rate was 1.49x10° m’/d, comparable to local river discharge. SGD-derived nutrients were
estimated to be 983.0 kg/d for dissolved inorganic nitrogen (DIN), 37.00 kg/d for PO;", and 4 023 kg/d for Si,
making SGD a a significant source of nutrients to coastal waters. In addition, groundwater had a high ratio of
nitrogen to phosphorus (mean: 139.6) and ratio of silicon to phosphorus (mean: 274.1), while the ratios in seawater
were 21.03 and 33.12, respectively. SGD with high ratio of nitrogen to phosphorus had important impacts on the

nutrient structure of coastal seawater. Sandy beaches are widely distributed, and the findings of this study can

provide scientific basis for the management of ecological environment in similar areas.
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Fig.1 Study area and monitoring-sampling system profile
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Table 1 Sampling information and physicochemical parameter values of all water samples
Tk — S p(TDE) ORP/mY ol p(NO3) p(NH} ) p(PO3™) p(Si)
/(g'L™) /(ng-L™")
Wi-1 8.62 28.27 21.96 -5.5 7.65 580.74 2.99 31.10 2519.79
Wi1-2 7.62 27.99 21.77 -20.1 7.58 616.18 24.72 26.14 2384.81
W1-3 6.62 22.36 17.79 -25.3 7.76 392.93 — — 3043.00
Wi-4 5.62 23.56 28.64 -33.1 7.72 3.15 907.86 22.57 4810.03
Wi-5 4.62 17.17 34.34 -31.9 7.95 28.93 2230.76 30.19 4620.44
W1-8 1.62 18.88 37.74 -31.7 7.99 65.99 185.08 97.84 3279.20
WI1-12 -1.38 8.94 17.87 -19.7 7.74 431 352.48 15.74 7290.78
W2-3 6.91 21.58 43.16 -9.9 7.75 547.17 — 31.98 2282.78
W2-7 2.91 721 14.48 -8.4 7.92 0.51 838.67 24.12 5623.41
W3-2 8.57 28.40 22.04 -9.4 7.86 432.42 0.75 70.67 2443.56
W3-3 7.57 28.43 22.06 -12.9 7.80 701.43 1.46 26.44 3078.02
W3-4 6.57 19.15 15.44 -8.3 7.91 463.60 — 60.89 5535.64
W3-5 5.57 24.42 19.26 0.2 7.70 4.17 674.05 90.66 5375.68
W3-6 4.57 8.65 7.46 0.4 7.58 52.19 1241.81 18.91 6273.10
W3-7 3.57 4.85 437 3.4 7.88 1.19 981.63 12.57 5505.43
W3-9 1.57 2.70 2.53 1.8 8.42 3.42 377.18 16.18 5984.33
W3-13 —0.44 6.44 5.71 -7.8 7.75 13.75 204.58 11.99 9 384.45
W4-4 7.26 11.92 10.05 -6.1 7.80 165.54 — 27.83 5655.45
W4-5 6.26 2278 18.06 9.4 7.69 1.11 561.69 78.57 5767.93
W4-6 5.26 10.26 8.72 -5.3 7.55 31.60 1623.57 21.34 5954.41
W4-7 426 15.21 12.52 -20.4 7.45 — 1260.15 — 5671.47
W4-9 3.26 8.17 7.14 -18.9 7.62 0.96 688.94 17.12 5512.57
W4-12 0.26 11.98 10.07 -17.9 7.46 7.85 708.47 — 7725.08
W5-3 7.72 0.13 0.14 80.6 8.47 6891.71 — 152.95 4324.70
W5-4 6.72 4.05 3.68 59.2 8.52 319.18 — 111.57 5453.36
W5-5 5.72 20.71 16.60 17.7 7.83 2.68 1009.61 42.64 5207.73
W5-6 472 15.39 12.71 8.4 7.72 17.38 2726.95 166.79 7193.67
W5-8 2.72 2.97 273 18.4 8.07 2.16 536.17 13.55 6 684.23
W5-9 2.22 1.89 1.80 8.5 7.72 17.48 404.56 11.00 7219.87
w6 6.87 0.44 0.90 10.9 8.36 6157.04 205.83 6.94 5840.88
K — 21.29 42.56 -12.0 7.70 258.25 510.42 80.79 2420.30
FRFHIEIK — 19.89 39.76 -17.7 7.72 828.09 982.78 229.51 1571.58
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Fig. 5 Contours of nutrient concentration in coastal groundwater
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Fig. 6 Correlation analysis of physicochemical parameters and nutrients in groundwater
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