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摘要：呼和坳陷白庙子凹陷地热地质条件优越，以往地热勘查主要围绕凹陷中心北部浅埋区热储层布置钻孔，但探获的热

储埋藏浅、热储厚度相对薄，探测西南部新近系深部砂岩热储，寻找高产能地热资源是呼和浩特市地热勘查开发的重要方

向。文章以白庙子凹陷西南部的 TD1 孔为依托，通过二维地震剖面解译、钻探、物探测井、放喷试验、水样测试分析，研究

新近系热储的特征、深部热对流机制、主要参数等。研究结果表明：（1）白庙子凹陷西南部新近系地热储层厚度大，是地热

资源勘查开发的有利目标区，TD1 孔新近系深部热储由大厚度砂砾岩组成，热储总厚度 299.5 m，占地层总厚度的 40.69%；

（2）TD1 孔在新近系中新统 2 030.9～2 282.5 m 深度共发育 14 层热储层，热储总厚度 160.4 m，占地层总厚度的 63.75%，孔隙

度平均值 26.27%，为 TD1 孔主要出水段；（3）TD1 孔口水温 75.0°C，孔底最高温度 80.7 °C， 2 030.9～ 2 282.5 m 深度热储层孔

隙度最高，井温梯度明显偏低，推测深部存在热对流；（4）TD1 孔放喷试验曲线反映了深部热储层呈强富水性特征，完井稳

定涌水量 233.12 m3/h，单井供暖潜力达 33×104 m2，为目前发现的呼和坳陷最高产能地热井。研究成果揭示了呼和坳陷白庙

子凹陷西南部新近系高产能热储特征和单井供暖潜力，可为未来呼和坳陷高产能地热资源勘查开发提供参考借鉴。
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Geothermal characteristics and high-yield geothermal well
parameters in the Baimiaozi sag of Huhe depression
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Abstract：The geothermal geological conditions of Baimiaozi sag in Huhe depression are favorable for geothermal
exploration.  Previous  geothermal  investigations  primarily  focused  on  boreholes  around  the  northern  shallow-
buried  zone  of  the  sag  center,  where  the  thermal  reservoirs  are  shallow and  relatively  thin.  However,  exploring
deep  Neogene  sandstone  geothermal  reservoirs  in  the  southwest  of  the  sag  represents  a  key  direction  for
geothermal  exploration  and  development  in  Hohhot.  Based  on  the  borehole  TD1 in  the  southwest  of  Baimiaozi 
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sag, this study analyzed the seismic data by interpretation of two dimension seismic profile, drilling, geophysical
logging, blowout test, and water sample test, to study the characteristics, deep thermal convection mechanism, and
main parameters of the Neogene geothermal reservoir. The results show that the Neogene geothermal reservoir in
the  southwest  of  the  sag  is  thick,  which  is  a  favorable  target  for  exploration  and  development  of  geothermal
resources.  The deep Neogene geothermal  reservoir  in  borehole  TD1 is  composed of  a  considerable  thickness  of
conglomeratic  sandstone,  with  a  total  thickness  of  299.5  m,  accounting  for  40.69% of  the  total  thickness  of  the
formation. 14 geothermal reservoir layers have been developed in the Neogene Miocene from 2 030.9 m to 2 282.5 m
deep in TD1 borehole, with a total thickness of 160.4 m, accounting for 63.75% of the formation’s total thickness
and an average porosity value of 26.27%, which is the dominant water-yielding section of the borehole TD1. The
wellhead temperature in the borehole TD1 is 75.0 °C, and the max bottom temperature is 80.7 °C. The geothermal
gradient  from 2 030.9 m  to 2 282.5 m  with  high  porosity  development  is  significantly  lower,  suggesting  the
existence  of  deep  heat  convection.  The  pumping  test  in  borehole  TD1  demonstrates  the  reservoir’s  high  water
yield, with a stable well flow rate of 233.12 m3/h. The heating potential with the single well is estimated at 33×104 m2,
making  it  the  highest-yielding  geothermal  well  currently  discovered  in  the  Huhe  depression.  These  findings
highlight  the  characteristics  of  high-yield  thermal  storage  and  the  single-well  heating  potential  of  the  Neogene
geothermal reservoir in the southwest of Baimiaozi sag, providing valuable insights for the future exploration and
development of high-yield geothermal resources in the Huhe depression.
Keywords：geothermal resources；neogene geothermal reservoir；high-yield geothermal well； thermal storage
parameters；Baimiaozi sag

 

地热资源是一种分布广泛、稳定、可再生、易于

利用及经济的低碳清洁能源，合理开发利用地热资源

在优化能源结构，促进节能减排方面具有广阔前景[1 − 5]。

根据传热方式、热储赋存特征及开发利用方式等因

素，可将中国地热资源分为浅层地热能、水热型地热

资源和干热岩 3 大类型[6 − 7]。其中，中国水热型地热资

源主要分布在松辽、汾渭、鄂尔多斯、河套、华北等平

原（盆地）。中国地热研究起步较晚，20 世纪 70—80
年代，中国取得一批主要盆地大地热流数据  [8]。20 世

纪 90 年代，国内研究了主要盆地水热型地热资源的

赋存特征，并评估了其开发潜力 [9]，开展了主要沉积盆

地热体制和热演化研究  [10 − 11]。到了“十二五”期间，国

内评价了主要盆地地热资源开发潜力  [12]。这些均为

宏观层面的地热研究。

内蒙古地热勘查研究始于 2000 年，先后对河套盆

地、鄂尔多斯盆地、乌海盆地等开展了地热勘查研

究，初步查明了自治区主要盆地地热资源分布状况[13]。

其中，呼和坳陷位于河套盆地的东部，由北部凹陷区、

南部斜坡区和西部断块区 3 个亚一级构造单元组成，

北部凹陷区具体又划分为大城西凹陷、哈素凹陷和白

庙子凹陷 3 个次一级构造单元[14]。自 2000年以来，在呼

和坳陷相继施工了 24 眼地热井，单井涌水量 641.76～
3 954.00 m3/d，井口出水温度 53～66 °C，勘查研究结果

表明呼和坳陷地热资源丰富。

白庙子凹陷位于呼和坳陷的东部，是一个以前震

旦系深变质岩为基底的中新生代沉积盆地。石油部

门曾开展过盆地构造、油气有利圈闭等勘测工作 [15]，

前人 [16 − 19] 也对地热成因、地热分布特征开展过部分

研究，研究表明白庙子凹陷主要赋存新近系地热储

层，以传导型地热为主。自治区地质勘查基金实施了

多项地热勘查项目 [20 − 22]，以往的地热勘查研究主要围

绕白庙子凹陷中心北部浅埋区热储开展工作，揭露的

新近系热储埋藏浅、热储厚度相对薄，尚未发现温度

更高、出水量更大的高产能热储层。为了研究新近系

深部粗碎屑砂岩热储特征，文章以白庙子凹陷西南部

的 TD1 孔为依托，通过二维地震剖面解译、钻探、物

探测井、放喷试验及水样测试分析，研究了新近系高

产能热储特征、深部热对流机制等，评价了热储参数

及单井供暖潜力，研究成果对未来呼和坳陷高产能地

热资源勘查开发具有重要意义。 

1    研究区概况
 

1.1    研究区地质背景

白庙子凹陷构造属于华北地台—鄂尔多斯台坳—

河套盆地—呼和坳陷的四级构造单元，具体位于呼和

坳陷亚一级构造单元北部凹陷区的东部，北临大青
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山，东南与南部斜坡相邻，西接哈素凹陷，受近东西向

及北东向盆地边界构造断裂所控制 [23]，呈北深南缓、

西深东浅的箕状形态，凹陷内部断裂构造不甚发育。

白庙子凹陷受燕山期的强烈构造运动形成了中新生

代盆地的沉积基底，凹陷沉积中心偏北，凹陷东部较

陡，西南部较缓，中心处沉积基底最大埋深约 5 200 m，

相继沉积了巨厚的中新生代河湖相堆积物，地层由凹陷

中心至边缘逐渐变薄，中心周围厚度达 4 400～5 200 m，

至凹陷边缘地带厚度逐渐变为 2 000～2 600 m（图 1）。

 
 

呼和浩特

包头

土默特右旗

土默特左旗

南 部
斜

坡

区

大城西凹陷
哈素 凹陷 白庙 子 凹陷

西
部

断
块

区

伊

青

山

盟 隆 起

北
部 凹

区陷

大

基底等高线/m

断层

地热钻孔TD1

剖面线

Q

N2w

N1w
E3l

K

A′

1 000

深
度

/m

深
度

/m

0

2 000

3 000

4 000

5 000

第四系 断层Q

1 000

0

2 000

3 000

4 000

5 000

6 000
0 5 10 15 20 25

平距/km

白垩系

（a）研究区地质图

（b）研究区A—A′ 地质剖面图

呼和浩特

土默特左旗
B′

B

-2 000

-3 000

-4 
00

0 -4 
20

0-3 
20

0

-3
00

0

-2
 0

00

铁帽

新营子

白庙子

塔布赛

毕克齐

TD1

HR6

HR10

HR5

后红岱
台阁牧

水滩

K

J

P

K

Q

Q

Q

Q

第四系

白垩系

地级市 旗、县 乡、镇

Q

K

J

P

0 40 km20

A′

A

N

0 8 km4N

侏罗系

二叠系

N2w

N1wE3l

K

Ar Ar Pt

Pt
Ar

Ar

Ar 太古宇

Pt 元古宇

Ar

上新统乌兰图克组

渐新统临河组 Ar 太古宇中新统五原组

360°A

图 1    研究区地质概况及地质剖面图

Fig. 1    Geological diagram and geological profile of the
study area

 

1.2    热储层特征

白庙子凹陷的地层岩性特征及其地热属性如图 2
所示。在白庙子凹陷研究区范围内，由深到浅相继沉

积了中生界白垩系，新生界古近系、新近系及第四系

地层 [24 − 25]，地热储层主要有新近系砂岩热储层和古近

系砂岩热储层。 

1.2.1    新近系砂岩热储层

热储层是新近系砂岩热储，新近系上新统下部和

中新统储层较发育。据凹陷北部 HR5、HR6 钻孔揭

露，热储底板埋深介于 1 200～1 500 m 之间，热储埋藏

浅，热储岩性较细，以细砂岩为主，静止水位+13.8～
+40.0 m，单井涌水量 73.66～116.70 m3/h，地热井出水

温度介于 56～64 °C，可作为地热供暖及温泉康养等梯

级开发利用的主要热储层，上部第四系地层及新近系

中新统上部泥岩地层为区域盖层。 

1.2.2    古近系砂岩热储层

热储层是古近系砂岩热储，据凹陷北部 HR10 钻

孔揭露，热储底板埋深 1 600 m，热储岩性较粗，以粗砂

岩为主，静止水位+45.5 m，单井涌水量 164.75 m3/h，地
热井出水温度 66 °C。古近系热储在凹陷北部埋藏

浅，易于揭露，热储岩性较粗，可作为地热供暖热储

层，上部第四系及新近系为区域盖层。

以往地热勘查主要围绕白庙子凹陷中心北部热

储层浅埋区布置钻孔，取得了较好的勘查成果，但探

获的新近系热储埋藏浅、热储厚度相对薄，尚不能构

成高产能热储层，而白庙子凹陷新近纪中新世为洪积

物沉积扩张期 [26]，岩性以砂砾岩为主，白庙子凹陷西

南部新近系中新统埋藏深、热储温度高，热储岩性粗、

渗透性好，有可能成为高产能热储层。本次深部热储

探测以新近系中新统粗碎屑砂岩热储为主要目标。 

2    深部热储探测方法
 

2.1    地球物理系统解译

二维地震可用来探测深部地层沉积构造，有利于

寻找地热资源 [27]，本次研究充分利用石油部门在 20 世

纪 80 年代开展的二维地震勘探成果资料，对白庙子

凹陷新近系中新统地热储层沉积特征分布进行解释，

凹陷中部 A—A′地震剖面（图 3）呈中 -强振幅、高频、

连续性好的反射结构，具平行的反射构造，反映凹陷

中心及附近为浅湖-半深湖沉积、厚层状泥岩发育特

征，不具备发育高产能热储的条件。西南部 B—B ′
地震剖面（图 4）新近系中新统呈弱振幅、低频、连续

性差的反射结构，反映出岩性变化大，具粗粒碎屑夹
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薄层细粒多层叠置河流相沉积的特征，凹陷西南部具

备形成高产能热储的条件。根据二维地震解释成果，

在西南部 B—B′地震剖面东侧附近 3.2 km 处布设了一

个地热勘探孔 TD1，设计孔深 2 550 m，是内蒙古自治

区地质调查研究院于 2020 年在白庙子凹陷布置的新

近系深部热储勘查钻孔，推测热储具有埋藏深、厚度
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图 2    白庙子凹陷地层综合柱状图

Fig. 2    Comprehensive histogram of strata in the Baimiaozi sag
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图 3    A—A′地震反射解译剖面图

Fig. 3    A−A′ seismic reflection interpretation profile
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大、涌水量大、温度较高的特点，可以探获高产能地

热井。 

2.2    地热地质钻探

地热地质勘探钻孔 TD1 位于呼和浩特市土默特

左旗塔布赛村，具体由河北省煤田地质局第二地质队

负责钻探施工，钻机型号 TSJ3000 型。该钻孔于 2021
年 3 月 11 日开钻，一开采用Ф444.5 mm 牙轮钻头，采

用低固相不分散泥浆体系 ，钻至井深 501.01 m 完

钻，全井段封闭止水，水泥浆返高至地面；二开采用

Ф311.3 mm  聚晶金刚石复合片钻头 （polycrystalline
diamond compact bit，PDC）与Ф311.3 mm 三牙轮钻头，

采用低固相不分散泥浆体系钻进，至井深2 551.98 m
终孔，对 445.53～1 546.40 m 井段外环状部位采用水泥

“穿鞋戴帽”固井止水，2021 年 6 月 27 日完钻，完钻井

深 2 551.98 m。钻遇地层依次为第四系，新近系上新

统乌兰图克组、新近系中新统五原组及古近系渐新统

临河组（图 5）。 

2.3    地球物理测井

地球物理测井工作采用 SKD-3000B 型数控测井

系统。测井项目包括：自然电位、自然伽玛、补偿声

波、视电阻率、双侧电阻率、微电极、泥浆电阻率、固

井质量检测（水位压差法、声幅固井检测）、井温、井

斜、井径等。测井解释成果见表 1。 

2.4    放喷试验

地热地质钻孔 TD1 完井后，按照《地热资源地质

勘查规范》（GB/T 11615—2010）[28] 并结合地热井自流

实际，对新近系热储层（1 546.4～2 282.5 m）进行了四

个落程的放喷试验，自 2021 年 6 月 12 日 00:00 开始

至 2021 年 6 月 22 日 12:00 结束。（表 2、图 6—7）。 

3    结果
 

3.1    TD1 孔热储特征

据 TD1 孔揭露及测井解释成果（表 1），新近系在

1 546.4～2 282.5 m 深度热储总厚度 299.5 m，占地层总

厚度的 40.69%，其中，上新统发育的孔隙型砂岩热储

在 1 546.4～2 030.9 m 深度共发育 30 层热储层，单层

热储最大厚度 9.7 m，热储总厚度 139.1 m，占地层总厚

度的 28.71%，孔隙度平均值 21.33%，渗透率平均值为

279.08×10−3 μm2；而新近系中新统在 2 030.9～2 282.5 m
深度共发育 14 层热储层，单层热储最大厚度 44.4 m，

热储总厚度 160.4 m，占地层总厚度的 63.75%， 孔隙度

平均值 26.27%，渗透率平均值为 470.35×10−3 μm2，显然

新近系中新统为 TD1 孔主要出水段。 

3.2    水文地质参数

TD1 孔完井后，进行了四个落程降压放喷试验，通

过迭代法求得新近系热储层渗透系数与影响半径 [29]，

计算公式为：

K =
0.366Q

MS
lg

R
r

（1）

R = 10S
√

K （2）
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图 5    TD1 钻孔柱状图

Fig. 5    Column diagram of borehole TD1
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K式中： ——渗透系数/（m·d−1）；

Q——涌水量/（m3·d−1）；

R——影响半径/m；

r——抽水管半径/m；

M——含水层厚度/m；

S ——降深/m。

 

表 1    TD1 新近系热储出水层测井解释成果

Table 1    Main Water-yielding stratum logging results of Neogene thermal storage in borehole TD1
 

层 号 层位 井段/m 层厚/m 电阻率/（Ω·m） 声波时差/（μs·m−1） 孔隙度% 渗透率/（10−3 μm2） 泥质含量/% 解释结论

1

N2w

1 546.4～1 556.1 9.7 7.8 354.6 27.6 489.54 16.5 水层

2 1 559.4～1 566.0 6.6 7.2 337.7 24.8 309.66 15.9 水层

3 1 570.7～1 576.5 5.8 8.5 351.1 27.1 446.36 20.6 水层

4 1 580.1～1 583.1 3.0 7.0 336.3 24.7 310.27 37.1 水层

5 1 594.5～1 598.9 4.4 5.7 345.1 26.2 404.64 22.2 水层

6 1 612.7～1 616.1 3.4 5.5 331.3 23.9 269.11 33.4 水层

7 1 633.9～1 635.3 1.4 3.2 339.5 25.4 357.49 39.4 水层

8 1 638.7～1 642.5 3.8 3.7 341.3 19.0 303.46 40.3 水层

9 1 672.3～1 679.7 7.4 4.3 327.7 23.5 448.40 24.6 水层

10 1 689.5～1 691.3 1.8 3.6 348.0 23.9 612.68 9.8 水层

11 1 710.9～1 716.0 5.1 4.0 326.1 23.0 339.80 20.5 水层

12 1 731.6～1 734.5 2.9 5.7 298.5 18.7 114.55 23.8 水层

13 1 738.5～1 740.7 2.2 4.4 347.1 25.4 436.33 30.6 水层

14 1 759.0～1 762.3 3.3 4.4 338.8 21.4 366.21 23.1 水层

15 1 781.1～1 785.8 4.7 3.9 306.4 20.2 132.44 39.7 水层

16 1 797.0～1 803.1 6.1 4.6 298.9 20.1 139.29 25.0 水层

17 1 822.1～1 825.8 3.7 3.9 307.5 22.3 243.88 35.9 水层

18 1 834.7～1 843.6 8.9 3.9 304.5 21.8 457.45 25.1 水层

19 1 861.2～1 866.6 5.4 3.6 309.1 20.5 316.54 33.3 水层

20 1 868.7～1 872.5 3.8 4.4 306.9 16.0 138.35 43.5 水层

21 1 905.8～1 914.4 8.6 4.7 280.1 16.9 80.36 22.8 水层

22 1 917.1～1 920.2 3.1 4.0 289.2 19.4 250.97 31.9 水层

23 1 922.7～1 926.6 3.9 4.5 293.2 20.1 148.30 25.8 水层

24 1 929.8～1 931.7 1.9 4.9 282.7 14.8 66.80 41.2 水层

25 1 935.4～1 938.8 3.4 3.1 303.3 17.4 209.27 40.2 水层

26 1 958.4～1 962.2 3.8 2.7 371.6 20.4 317.99 29.4 水层

27 1 966.7～1 968.9 2.2 4.5 294.9 17.3 161.86 36.0 水层

28 1 981.3～1 984.1 2.8 2.9 329.8 20.9 406.37 45.1 水层

29 1 997.3～2 004.1 6.8 4.6 257.5 15.7 67.37 23.2 水层

30 2 021.7～2 030.9 9.2 4.9 271.0 18.2 84.56 23.8 水层

31

N1w

2 042.4～2 063.4 21.0 2.8 340.0 25.4 340.28 21.7 水层

32 2 064.9～2 109.3 44.4 3.0 353.2 27.0 515.12 27.2 水层

33 2 110.9～2 113.0 2.1 2.4 353.4 28.1 526.18 23.6 水层

34 2 129.3～ 2 137.3 8.0 1.9 351.8 27.5 506.15 29.1 水层

35 2 138.7～2 143.0 4.3 1.8 367.3 24.1 756.49 39.3 水层

36 2 149.0～2 171.3 22.3 1.9 350.3 26.5 480.12 23.4 水层

37 2 177.9～2 186.9 9.0 2.0 354.0 25.3 454.73 28.6 水层

38 2 197.5～2 214.8 17.3 1.6 352.0 28.3 574.54 13.5 水层

39 2 216.4～2 224.4 8.0 1.7 345.0 27.0 526.70 13.9 水层

40 2 232.7～2 238.8 6.1 2.0 336.3 25.5 351.78 11.9 水层

41 2 242.6～2 245.7 3.1 2.2 307.0 20.0 231.15 23.8 水层

42 2 260.9～2 263.6 2.7 3.9 310.2 18.1 151.35 32.3 水层

43 2 267.2～2 277.2 10.0 1.7 344.7 27.2 463.48 17.0 水层

44 2 280.4～2 282.5 2.1 1.8 353.6 17.6 77.36 10.7 水层
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式（1）（2）联立，计算结果见表 2。
导水系数（T）计算公式为：

T = K ·m （3）

m式中： ——热储层厚度/m。
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图 6    TD1 孔放喷试验历时曲线

Fig. 6    Water level dynamic curve of Blowout test in borehole TD1
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Fig. 7    Curve of full section blowout test of Neogene in borehole TD1

 

表 2    TD1 孔放喷试验水文地质参数

Table 2    Blowout test results of hydrogeological parameters for TD1 borehole
 

落程 放喷时间/h
稳定延续
时间/h

热水头
/m

稳定动
水位/m

涌水量
/（m3·h−1）

降深
/m

单位涌水量
/（m3·h−1·m−1）

出水温度
/°C

抽水管
半径/m

含水层
厚度/m

渗透系数
/（m·d−1）

影响半径
/m

第一落程 72.00 71.50

+58.12

+16.81 233.12 41.31 5.64 75.0 0.118 3 299.5 0.57 312
第二落程 96.00 95.54 +27.81 170.00 30.31 5.61 75.0 0.118 3 299.5 0.54 223
第三落程 48.00 47.54 +37.13 117.98 20.99 5.62 74.5 0.118 3 299.5 0.52 151
第四落程 24.00 23.52 +47.45 60.51 10.67 5.67 74.5 0.118 3 299.5 0.47 73

　　注：四个落程的渗透系数平均值为0.51 m/d。
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T计算结果 =152.75 m2/d。 

3.3    TD1 孔井温特征

根据研究需要，进行了 2 次井温测井。在钻井

完钻刚结束时进行了第 1 次全井段测温，井底温度

78.3 °C，24 h 后进行了第 2 次全井段测温，井底温度

80.7 °C。2 条测温曲线的中性点（2 条及以上的钻孔测

温曲线有一共同的交点 [30]）位于 820.0 m（图 8），温度

41.7 °C，中性点以上钻井循环液受周边岩层热传导，

逐渐接近原始地温，第 1 次测温曲线中性点以上增温

明显。中性点以下 2 条测温曲线偏离程度较小，钻孔

底部受钻井循环液影响小，第 2 次测温曲线井底处更

接近真实地层温度，中性点以下温度与深度总体上呈

线性关系，反映了传导性地温特征。 

3.4    TD1 孔地热流体水化学特征

SO2−
4

HCO−3

TD1 孔测试结果表明，地热水水化学类型为 Cl—Na
型 ，阳离子 Na+、 K+、 Mg2+、 Ca2+的质量浓度分别为

2 722.0，37.6，29.3，528.0 mg/L，主要阴离子 Cl−、 、

的质量浓度分别为 4 865.0， 325.0， 115.0  mg/L。
TD1 孔地热水总溶解性固体质量浓度为 8.56  g/L。
TD1 孔地热水偏硅酸质量浓度为 53.70 mg/L，达到理

疗热矿水浓度和命名矿水浓度。地热水碘质量浓度

为 7.01 mg/L，达到命名矿水浓度，是优质的理疗热矿水。 

4    讨论
 

4.1    高产能热储特征

表 3 反映了 TD1 孔与凹陷北部 3 个地热孔的热

储参数对比，从揭露的热储层厚度分析，TD1 孔热储

总厚度和新近系中新统热储厚度均最厚，分别为 299.5，
160.4 m，新近系中新统砂厚比高达 63.75%；HR10 孔热

储厚度次之，为 226.1 m；HR5 最薄，为 180.5 m。从平

均孔隙度分析，各孔新近系中新统热储层孔隙度均比

上新统大，其中 TD1 孔最高，为 26.27 %。从单位涌水

量 （q）分析 ， TD1 最高 ，为 5.64 m3/（h·m）； HR10 孔次

之，为 4.12 m3/（h·m）；HR5 最小，仅为 0.85 m3/（h·m）。从

孔口出水温度分析，TD1 孔最高，为 75.0 °C；其次为

HR10 孔，为 66.0 °C；最低的是 HR5 孔，为56.0 °C。综

合分析认为，热储总厚度和孔隙度是决定白庙子凹陷

新近系砂岩热储涌水量的关键因素，反映出在凹陷西

南部新近系深部热储可以探获更大单位涌水量和更

高温度的地热资源。这也说明了将西南部新近系深

部热储作为高产能地热勘查目标层位是正确的，将

TD1 孔作为高产能地热探测孔是合理的。 

4.2    热对流机制

根据 TD1 地热井测井井温与地层埋深垂向上的

对应关系（图 8），上部第四系砂质黏土层、淤泥层厚，

孔隙度大 ，热导率低 ，地温梯度大 ，井温梯度高达
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Fig. 8    Vertical distribution of well logging temperature and well
logging temperature gradient in borehole TD1

 

表 3    地热钻孔热储参数对比

Table 3    Comparison of geothermal borehole and thermal storage parameters
 

孔号 井深/m 热储厚度/m %砂厚比/ %平均孔隙度/ 单位涌水量/（m3·h−1·m−1） 孔口出水温度/°C 构造位置

HR5 2 404 180.5

N2w：49.0 42.72 20.06

0.85 56.0 凹陷东北部N1w：114.1 22.02 21.24
E1l：17.4 5.96 22.33

HR6 2 400 218.8
N2w：81.3 11.24 16.15

1.46 64.0 凹陷北中部
N1w：137.5 33.54 20.71

HR10 2 206 226.1 E3l：226.1 38.45 25.81 4.12 66.0 凹陷北部

TD1 2 552 299.5
N2w：139.1 28.71 21.33

5.64 75.0 凹陷西南部
N1w：160.4 63.75 26.27
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48.5 °C/km，是良好的盖层。进入新近系后，成岩程度变

高，岩石热导率变大，井温增幅降低，新近系上新统井

温梯度 21.2 °C/km，而中新统井温梯度仅为 17.4 °C/km，

与厚层状粗碎屑砂砾岩地热储层连续分布有密切关

系，热储层孔隙度大、渗透性好，富水性强，上、下层

位地下热水存在对流作用，井温增加幅度降低最为明

显。下部为古近系渐新统，孔底最先达到地温，而上

面一段地温尚未完全恢复，井温梯度变为 39.1 °C/km，

计算的井温梯度偏大，但钻遇的渐新统以泥岩为主，

砂岩不发育，受地下热水活动影响明显减弱。 

4.3    地热水成因

TD1 孔总溶解性固体质量浓度为 8.56 g/L，明显

高于凹陷北部 HR5（6.08 g/L）、HR6（2.04 g/L）及 HR10
（3.67 g/L），反映了水-岩溶解作用程度在凹陷西南部

较凹陷北部明显增强。根据水-岩作用程度，可将地热

水区分为未成熟水、部分平衡水和完全平衡水 3 种类

型[31]，研究区地热水的平衡状态如图 9 所示，研究区地

热水均处于部分平衡区，说明了反应的平衡温度偏

低，热水在上涌的过程中受到上部低温水的混合作

用。 TD1 孔热储温度高于凹陷北部地热孔热储温度，

并大于出水温度，同样反映了凹陷西南部热储较凹陷

北部隔热保温更好，封闭性更强，水 -岩作用程度较

高，以致凹陷西南部总溶解性固体浓度较凹陷北部明

显变大。 

4.4    TD1 孔参数评价

如图 7 所示，TD1 孔新近系热储放喷试验 Q-S 曲

线呈直线型，直线过原点，判定系数平方和（R2）为 1，
表明热储层呈强富水特征并且有稳定的补给来源，

TD1 孔放喷试验曲线最大的特点是放喷降压开始时

动水位很快趋于稳定，降压结束瞬间井内水位骤升，

随后水位逐渐下降，这是因为地热井水温高，且热储

层埋藏深度大，降压结束时水柱上下温度一致，之后

地热水受上部地层冷却影响，密度增大，水位下降，放

喷试验过程中温度效应引发的水位变化是不可忽略

的 [32 − 33]。根据放喷试验降深为 41.31 m 时，涌水量为

233.12 m3/h，计算的渗透系数为 0.57 m/d，影响半径为

312 m。 

4.5    单井供暖潜力

依据《地热资源地质勘查规范》 （GB/T 11615—

2010）[28]，地热流体可开采热能计算公式为：

Wt = 4.186 8 ·Qk · (t− t0) （4）

Wt式中： ——热功率/kW；

Qk ——地热流体可开采量/（L·s−1），取值 64.75；
t——地热流体温度/°C，取值 75.0；
t0 ——当地年平均气温/°C，取值 9.4。

地热流体有效利用热资源量计算公式：

Qy = Qk ·ρw ·Cw · (tr− tq) （5）

Qy式中： ——地热水有效利用热资源量/kJ；
Qk——地热流体可开采量 /（m3·h−1），按年供暖

180 d，取值  233.12；
ρw——热水密度/（kg·m−3），取值 1 000；
Cw——热水比热容/（kJ·kg−1·°C−1），取值 4.186 8；
tr——井口水温/°C，取值 75.0；
tq——板换后尾水温度/°C，取值 25.0。

经计算，TD1 孔可开采热能 17 783.85 kW，年有效利

用热资源量 2.11×1011 kJ，有效利用热能 13 567.38 kW，

年折合标准煤约 7 193 t。供暖潜力计算公式为：

F =
Qy

180×24×3 600 ·qn
（6）

F式中： ——供暖面积/m2；

qn——建筑物设计采暖热负荷/（W·m−2），取值 40。
经计算 TD1 孔热水直供取暖面积可达338 898.2 m2，

与呼和坳陷主要地热井对比可知（表 4），TD1 孔比呼

和坳陷最深孔 HBDR2（孔深 3 016 m）的涌水量和地热

产能都大。TD1 孔是白庙子凹陷乃至呼和坳陷，迄今

为止发现的涌水量最大、单位涌水量最大、地热产能

最高的地热井。 

5    结论及建议

（1）白庙子凹陷西南部新近系地热储层厚度大，

是地热资源勘查的有利目标区，热储具有埋藏深、涌
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水量大、温度高的特点，TD1 孔新近系热储由大厚度

砂岩、砂砾岩组成，热储总厚度 299.5 m，占地层总厚

度的 40.69%，新近系中新统上部和第四系是良好盖层。

（2）TD1 孔在新近系中新统 2 030.9～2 282.5 m 深

度共发育 14 层热储层，单层热储最大厚度 44.4 m，热

储总厚度 160.4 m，占地层总厚度的 63.75%，孔隙度平

均值 26.27%，渗透率平均值为 470.35×10−3 μm2，为 TD1
孔主要出水段。

（3）TD1 孔口水温 75.0 °C，孔底最高温度 80.7 °C，

2 030.9～2 282.5m 深度热储层孔隙度最高，井温梯度

明显偏低，与厚层状粗碎屑砂砾岩地热储层连续分布

有密切关系，推测深部存在热对流。

（4）TD1 孔放喷试验曲线反映了深部热储层呈强

富水性特征，完井稳定涌水量 233.12 m3/h，单井供暖潜

力达 33 万 m2，为目前探获的呼和坳陷涌水量最大、产

能最高的地热井。

白庙子凹陷西南部是高产能地热资源分布有利

区，将为呼和浩特市地热资源开发利用提供有力支

撑，但新近系深部热储埋藏深，粗碎屑砂岩热储空间

分布规律尚不能精细刻画，需进一步深入研究。
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表 4    TD1 孔与呼和坳陷主要地热井基本情况对比表

Table 4    Basic parameters comparison between main geothermal wells in the Huhe depression and borehole TD1
 

序号 位置/编号
井深
/m
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深度/m

热储时代
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岩性

涌水量
/（m3·h−1）

单位涌水量
/（m3·h−1·m−1）
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/°C

地热井产能
/kW

资料
来源

1 土默特左旗塔布赛村/TD1 2 552 1 546.4～2 282.5 N2w-N1w 砂砾岩 233.12 5.64 75.0 17 783.85 本研究，2021年

2 土默特右旗巧儿气村/HBDR2 3 016 2 288.3～2 997.0 N2w-N1w 粗砂岩 201.60 1.58 82.0 17 068.74

文献[20]

3 土默特左旗独立坝村/HBDR3 2 221 1 378.10～2 210.1 N1w-E1l 细砂岩 132.99 2.84 62.0 8 135.50

4 土默特左旗后红岱村/R10 2 206 1 600.3～2 106.3 E1l 粗砂岩 164.75 4.51 66.0 10 844.80

5 土默特左旗台阁牧地区/HR5 2 404 2 120.0～2 284.3 N2w-N1w-E1l 细砂岩 73.66 0.85 56.0 3 992.06
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