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摘要：秃尾河是黄河“几”字弯东翼一个重要的支流，流域大气降水、地下水和河湖水水力联系密切，控制着流域生态格局

的演化、稳定和安全。基于秃尾河流域地质地貌、水文地质条件和降水、地下水与河湖水（以下简称“三水”）转化关系，通

过野外调查、动态观测、遥感解译、基流解析和统计分析等手段，分析了三水转化特征及其生态效应，得到如下认识：（1）在

地质地貌条件和三水转化的控制下，空间上可将流域生态系统划分为湖群-灌-草-乔湿环境生态系统、草-灌-乔-沙干环境生

态系统、矮化疏林-草干环境生态系统、农田-乔湿环境生态系统和河滨带湿环境生态系统；（2）时间上，自 20 世纪 90 年代以

来，流域呈现植被覆盖度增加、地下水位下降、河流基流量减少、湖淖湿地减少的趋势；（3）流域生态格局的形成和演化是

自然因素和人类活动共同作用的结果，其中地质地貌条件控制流域生态系统的基本格局，水循环特征控制流域生态格局演

化方向和时空变异趋势，人类活动极大地改变了原生生态格局，主导着现代生态格局演化的方向与强度；（4）流域生态格局

的安全与稳定对水分有强依赖性，保持水系连通、增强三水转化强度、维持沙区地下水位埋深在 1.5～5 m 范围内对区内生

态系统的健康至关重要。基于秃尾河流域三水转化单向水循环特征，提出了河滨带概念，指出河滨带是流域水流、物流、

能流和信息流的源和汇，起生态廊道的作用，河滨带生态功能对流域生态环境质量具有指示作用，可作为流域生态环境质

量评价的重要指标之一。研究成果对于黄河“几”字弯以及其他类似地区流域的生态环境保护与治理有重要的指导作用。

关键词：三水转化；生态格局；河滨带；秃尾河；黄河“几”字弯
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Abstract：The  Tuwei  River,  an  important  tributary  of  the  Yellow  River,  located  in  the  eastern  Jiziwan  region
exhibits a close hydraulic connection between atmospheric precipitation, groundwater, and river-lake water in the 
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watershed. This connection influences the evolution, stability and safety of the watershed ecological pattern. Based
on  the  geological,  geomorphological  and  hydrogeological  conditions,  and  the  water  transformation  between
atmospheric precipitation, groundwater, and river-lake water (hereinafter referred to as three-water) in the Tuwei
River, this study examined the characteristics of the three-water transformation and their ecological effects using
field investigation, dynamic observation, sensing interpretation, base flow analysis, and statistical analysis. Under
the control of geological and geomorphological conditions and the three-water transformation, the watershed can
be  spatially  divided  into  lakes-shrub-grass-tree  wet  environment  ecosystem,  grass-shrub-tree-sand  dry
environment  ecosystem,  dwarf  sparse  forest-grass  dry  environment  ecosystem,  farmland-tree  wet  environment
ecosystem,  and  riparian  wet  environment  ecosystem.  Since  the  1990s,  the  vegetation  coverage  of  the  watershed
has increased, while the groundwater levels have dropped, the river base flow has decreased, and the lake wetland
has shown a decreasing trend. The formation and evolution of the watershed ecological pattern is the result  of a
combination of natural factors and human activities. The geological and geomorphological conditions control the
watershed  ecological  pattern,  and  the  hydrological  cycle  characteristics  control  the  evolution  direction  and
spatiotemporal  variation  trend  of  the  watershed  ecological  pattern.  Human  activities  have  greatly  changed  the
original  ecological  pattern  and  dominated  the  direction  and  intensity  of  the  contemporary  ecological  pattern
evolution.  The  safety  and stability  of  the  watershed ecological  pattern  are  highly  dependent  on  water  resources.
Maintaining  hydrological  connectivity,  enhancing  the  intensity  of  three-water  transformation,  and  ensuring  the
groundwater level in the desert area within the range of 1.5～5 m are crucial to the health of the ecosystem in the
area.  Based  on  the  one-way  three-water  transformation  characteristics  in  the  Tuwei  River,  the  definition  of  the
riparian zone was proposed.  The riparian zone is  the source and sink of water  flow, material  flow, energy flow,
and information flow in the watershed, and plays the role of an ecological corridor. The ecological function of the
riparian zone has an indicative effect on the status of the watershed ecological environment and can be used as one
of  the  important  indicators  for  the  assessment  of  the  watershed  ecological  system.  These  findings  support  the
protection  and  governance  of  ecological  environments  for  the  Jiziwan  region  of  the  Yellow  River  and  similar
watersheds.
Keywords：three-water transformation；ecological pattern；riparian zone；Tuwei River；Jiziwan region of the
Yellow River

 

“山水林田湖草沙生命共同体”系统治理理念的提

出体现了区域生态环境整体性、系统性和功能性的特

点，从本质上定义了以多要素构成的流域生态环境整

体保护和修复的战略方向，即从过去的以单一要素、

局部保护修复为目标转变为以多要素—多过程、全面

保护修复流域生态系统为目标 [1]。在干旱半干旱地区

（以下简称“旱区”），受地质地貌、水文地质条件、气

候水文、人类活动等共同控制，流域生态系统水分的

转化机制极为复杂 [2 − 4]。当前，流域生态系统相关的

研究多集中于流域景观格局指数时空分布及成因

研究 [5]，流域生态系统服务、生态风险及生境质量评

估 [6 − 8]、流域生态安全格局的构建与优化 [9] 等方面。

旱区流域大气降水（蒸散发）、地下水和河湖水（以下

简称三水）水力联系极为密切，关系转化频繁，控制着

流域生态格局的演化、安全和稳定，是联系流域“山水

林田湖草沙生命共同体”的纽带 [2]。以往对三水转化

的机理以及对水资源形成等方面关注的较多，随着旱

区生态问题的凸显，亟需加强三水转化视角下流域生

态格局演化、生态效应与作用机制的研究 [4]。如何在

三水转化的视角下，认识流域生态格局演化规律，寻

求形成旱区流域生态协同修复与保护的规划设计策

略与解决途径，是水文地质学、景观生态学、空间规

划等相关领域交叉融合的前沿问题和急需解决的实

际问题[10 − 13]。

秃尾河流域内三水转化关系密切，近年来，受环

境变化的影响，区内三水转化关系与强度发生了显著

的 变 化 ， 对 流 域 生 态 格 局 的 演 化 产 生 了 深 刻 影

响 [14]。本文以秃尾河流域为研究区，以三水转化对流

域生态格局演化的影响为目标，基于流域地质地貌、

水文地质条件与气象水文资料分析，通过野外调查、
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地下水位长期观测、遥感解译、原位试验等方法，解

析流域三水转化特征，分析环境变化对三水转化及其

生态效应，识别诊断生态格局变异规律与驱动力。 

1    研究区概况

秃尾河流域地处黄河“几”字弯东翼，西北部与红

碱淖流域的湖群高平原区相邻。秃尾河源于毛乌

素沙漠区，流经盖沙丘陵区和黄土丘陵沟壑区（图 1），
在佳县武家峁村汇入黄河，干流全长 139.6 km，面积

3 294 km²，属于黄河的一级支流。高家川水文站多年

平均径流量为 3.51×108 m3，主要以地下水和降水补给

为主，其中地下水对秃尾河补给量占高家川断面径流

量的 68%，枯水期河流径流量全部由地下水补给[15]。
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图 1    研究区位置

Fig. 1    Location of the study area
 

历史上秃尾河的上游，在瑶镇—圪丑沟—尔林兔

镇之间的沙漠区分布着大量碟状湖淖，这里地势平

坦、降水量相对丰富，地下水位埋深浅，为湖淖与湿地

的形成奠定了基础。据遥感解译，1980 年前后约有 75
个湖淖和湿地。2000 年以后，受人类活动和气候变化

的影响，区内地下水位下降，许多湖淖湿地萎缩甚至

消失，2020 年仅有约 40 个湖淖，且大部分已演变成小

型间歇性湖淖。

流域属温带半干旱季风气候区，多年平均气温为

8.5 °C，多年平均降水量为 439 mm，多年平均潜在蒸散

发为 1 040 mm，具有冬季寒冷干燥、降水少，夏季炎

热、多阵雨的气候特征。

流域地下水类型为松散岩类孔隙水（介质为风积

沙和萨拉乌苏组砂）、碎屑岩类孔隙-裂隙水和黄土孔

隙-裂隙水。地下水依靠大气降水补给，向河湖径流、

蒸散发和人工开采为排泄途径。中上游的沙区和盖

沙丘陵区含水层厚度大，包气带岩性为均质沙，补给

入渗条件好，含水层富水性和调节能力强。

沙漠区由旱生和中生 -湿生植被构成，分布有沙

柳、沙蒿、局部残存臭柏等，洼地、湖淖周边生长有诸

如芦苇、蒲草等挺水植物；盖沙丘陵区多生长沙蒿、

沙柳、柠条等，局部分布有芒草、百里香、天然臭柏

等，在泉集河或大泉附近生长有芦苇等挺水植物以及

旱柳、杨柳等乔木；黄土丘陵沟壑区以丛生禾草为主；

河滨带生长有芦苇等挺水植物，乔木稀少，残存有侧

柏、油松、杜松等，人工乔木有杨、柳、刺槐等，河谷

阶地区分布有旱田作物。

秃尾河流域生态环境演变经历了水土资源过度

开发和生态修复的不同阶段。20 世纪 70—90 年代，

水土流失治理措施在全流域的推进取得了较好的成

效，生态环境总体质量向好趋势发展 [16]，但受诸如农

业耕地扩大、地下水开采量增加、植被恢复、水库修

建等人类活动影响，流域天然水循环发生了变化，对

区域生态格局产生了一定的影响，水循环变异及对生

态格局的影响等问题亟待回答。

为了讨论方便，文中地下水指广义的地下水概

念，即将包气带水和饱水带水统称为地下水。 

2    数据与方法

（1）野外调查

采用面上控制、剖面精研和点上监测的方法，按

照 1∶5 万精度开展野外调查。在不同地质地貌单元

选择典型断面，调查地下水埋深、包气带含水量与含

盐量、地表生态类型、植被类型与根系发育程度和生

长指标。根据调查结果绘制地下水等水位线与埋深

分区图、包气带含水量与含盐量随地下水位埋深变化

趋势图、植被生长指标与地下水位埋深关系图等。

（2）动态观测与遥感解译

在野外调查的基础上，收集区内已有的动态观测

孔资料，分析地下水动态变化规律。采用中国科学院

地理科学与资源研究所提供的遥感影像资料（http://

·  38  · 水文地质工程地质 第 6 期
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www.resdc.cn/），对秃尾河流域地质地貌特征和生态环

境类型进行分区、分类、分时段解译，分析归一化植

被指数 （normalized  difference  vegetation  index，NDVI），
分析生态格局变化趋势。遥感解译从 1990—2020 年，

每 5 年解译一次。

（3）基流解析

依据高家川水文站 1956—2016 年逐日平均流量

过程线，采用英国水文所开发的基流变化计算程序

BFI（base flow index）[17]，进行基流解析，分析秃尾河流

域地下水对河流径流量的贡献。

（4）统计分析

根据调查、观测和相关数据，运用统计分析的方

法分析变量之间的相关关系。应用拟合优度（R²）检验

相关程度，运用变异系数分析比较不同数据集的变

异性。

本研究涉及的其他数据如地质地貌、气象水文、

水文地质条件、植被类型等来自相关调查研究报告。 

3    结果
 

3.1    流域不同地貌单元三水转化特征

根据地貌类型和野外调查结果，将秃尾河流域分

成上游沙漠区、中游盖沙丘陵区和下游黄土丘陵沟壑

区。上游风沙区含水层厚度大（20～100 m，局部大于

100 m），年降水量 410 mm 左右，地势平坦，地下水水位

埋深 0～3 m，地下水补给和储存条件优越，补给模数可

达 15.24×104 m3/（a·km2），单井涌水量为 500～2 000 m3/d，
为富水区。中游盖沙丘陵区，地形起伏较大，沟谷切

割较深，含水层为风积沙、萨拉乌苏组粉细、中砂层

和侏罗系烧变岩裂隙带，降水量 400～410 mm，丘间滩

地区地下水位埋深一般 3～5 m，局部大于 5 m，沙丘处

地下水位埋深一般大于 10 m。地下水的补给条件较

好，补给模数为 8.24×104 m3/（a·km2），单井涌水量 300～
1 000 m3/d，地下水较丰富。地下水在沟、河谷适宜的

地方出露为泉，形成流量较稳定的大泉和泉集河，如

清草界泉集河、袁家沟泉集河、黑龙沟泉、采兔沟泉、

清水沟泉和香水沟泉等（目前部分已经消失或者淹没

于水库中），单泉流量可达 20～259 L/s。下游黄土丘

陵沟壑区，地形切割破碎，三水转化条件差，地下水位

埋深 10～60 m，雨季坡面径流迅速汇集成洪水，极少

入渗，仅河床下有微弱的潜流，属于贫水区 [18]；河谷区

含水层主要为冲洪积中细砂，沿河谷呈条带状分布，

一般宽几十米到几百米，一级阶地多为农田，地下水

位埋深 0.5～3 m，靠近河流岸边地下水位埋深一般小

于 2 m，局部地段土壤盐碱化。总体规律为：由上游—

中游—下游地下水位埋深由浅变深，地下水的储存、

富水性能和调节功能由强变弱。

流域三水转化的基本特征是：降水补给地下水，

然后地下水又补给河湖水，三者之间关系密切，转化

方向为单向性；后者对前者有很强的依赖性，地下水

和河湖水是同一补给源的两种表现形式，地下与地

表、上游与下游、左岸与右岸相互连通，构成统一体。

不同地貌单元三水转化模式与特征如图 2 所示。 

3.2    流域生态空间的分布特征

依据秃尾河流域不同地貌单元三水转化特征与

地下水水位埋深、包气带含水率、生态类型等调查、

监测的数据，将流域生态空间由上游到下游划分为湖

群-灌-草-乔湿环境生态系统、草-灌-乔-沙干环境生态

系统、矮化疏林-草干环境生态系统、农田-乔湿环境

生态系统和河滨带湿环境生态系统（图 3）。在此基础

上，分析了不同生态系统景观生态特征与地下水的关

系。由图 3 看出，随着地下水位埋深增大，土壤包气

带含水率由大变小，生态系统由湖群-灌丛-草-乔湿环

境生态系统向草-灌-乔-沙干环境生态系统和矮化疏

林-草干环境生态系统演化。在地下水位埋深 0～5 m
的区域，地下水位和包气带含水率的变化对表生生态

系统影响显著；当地下水位埋深大于 5 m，地下水位埋

深对表生生态系统影响不显著，但由于植被根系在包

气带吸水作用，造成降水对地下水入渗补给量减少，

在久旱不雨的情况下在根际区形成“干层”，一定程度

上引起沙化和地下水入渗补给量的减少。 

3.3    植被盖度与降水量和地下水位的演变趋势

图 4 显示自 20 世纪 90 年代以来秃尾河流域植被

盖度、降水量和地下水位埋深变化趋势，可以看出

植被盖度、降水量和地下水位埋深整体呈波动增加

趋势。经历了三个阶段的演化，第一阶段 1990—2000
年，NDVI 缓慢增加，NDVI 平均值和变异系数分别为

0.152 6 和 15.17%；年平均降水量为 349.59 mm，地下水

位埋深较浅且呈波状缓慢下降趋势，典型观测孔平均

地 下 水 位 埋 深 2.66 m。 第 二 阶 段 2000—2012 年 ，

NDVI 呈波动状增加趋势，平均值为 0.197 5，变异系数

为 20.34 %；年平均降水量 418.54 mm，比第一阶段增

加了 19.7%；地下水位前期呈波动缓慢下降，后期出现

急剧下降，典型观测孔平均地下水位埋深 4.46 m。相

比第一阶段，NDVI 明显增加，但波动也更加剧烈，主

要原因是降水量波动较大造成的。第三阶段 2012—

至今，NDVI 呈波动状快速增加趋势，平均值达到 0.34，
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变异系数 24.01%；年平均降水量达到 517.49 mm，与第

一、第二阶段相比分别增加了 48.03% 和 23.64%；而地

下水位波动更加剧烈，尤其是 2015 年以后出现断崖式

下降趋势，典型观测孔平均地下水位埋深为 6.32 m，与

第一、第二阶段相比下降 3.66 m 和 1.86 m。由此可

见，NDVI 与降水量和地下水位变化密切相关。 

3.4    河流基流变化趋势

图 5 是自 20 世纪 50 年代以来秃尾河基流的变化

趋势。由图 5 可见，基流量一直处于波动下降趋势，

特别是自 1998 年以来下降趋势明显。自 2000 年以

来，尽管降水量呈增加趋势，但河流基流量仍呈现减

少趋势。主要原因可归结于近 20 a 来区域地下水位

下降和中上游瑶镇和采兔沟两个水库的修建与蓄水，

河道下泄水量减少；同时，下游河岸两侧硬质化，隔断

了河流与两岸地下水的直接水力联系。上述因素共

同作用，引起锦界工业园区以下河道两侧地下水补给

量减少。 

4    分析与讨论
 

4.1    地质地貌条件控制流域生态基本格局

地质地貌条件是地下水形成、演化的基础，与气

象水文条件共同控制着不同地貌单元上地下水的补

径排途径、水循环模式与强度、富水性、调蓄能力和

动态变化，这些水分要素为地表生态系统提供生存的

环境（例如干、湿环境等）和水源保证。由于流域尺度

地质地貌条件的差异性，必将导致水分运移的差异

性，进而引起生态空间的异质性。图 2 和图 3 显示，从

上游到下游，三种地貌单元的生态系统随地貌类型和

水循环要素的趋势变化，即由湖群-灌-草-乔湿环境生

态系统向草-灌-乔-沙干环境生态系统和矮化疏林-草
干环境生态系统演化，生态空间分异与地质地貌条件

和相关联的水循环要素有较好的适配性。 

4.2    生态系统对水循环要素变化的敏感性 

4.2.1    河湖水生态对水循环要素的响应

区内大气降水、地下水和河湖水关系密切，三者
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图 2    秃尾河流域不同地貌单元典型剖面三水转化模式与特征

Fig. 2    Three-water transformation patterns and characteristics of typical sections in different geomorphic units
in the Tuwei River watershed
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之间水力联系呈单向性转化，后者对前者有很强的依

赖性，任何一部分的变化都会影响整个系统。在此情

况下，地下水和河湖水是同一补给源（降水）的两种表

现形式，本文称这种河湖为地下水依赖型。保持地下
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图 3    秃尾河流域生态空间分布与地貌类型和关键水文要素关系简图

Fig. 3    Relationship between ecological space, geomorphic types, and key hydrological elements in the Tuwei River watershed
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水依赖型河湖的水动力条件是地下水与河湖具有统

一的浸润面，且地下水补给河湖水，这是该类型河湖

健康的必要条件；相反，如果地下水位与河湖水位脱

节或者二者虽然具有统一的浸润面但河湖水补给地

下水，河湖水域必然发生萎缩或者消失，出现这种情

况的一个主要原因是区域地下水位出现持续下降，核

心是水循环条件发生变异。

历史上，秃尾河流域沙漠区和盖沙丘陵区在地下

水位埋深小于 1 m 地段分布许多沼泽和湖淖，呈现“挖
坑即见水”的现象，构成独特的生态类型。近些年来，

由于区内中上游耕地的大量开垦和植被恢复，导致地

下水位持续下降。据不完全统计，仅沙漠区与盖沙丘

陵区分布着分散式的耕地达 35 片左右，部分耕地分

布于供水水源附近，大量抽取地下水作为灌溉水源，

亩均用水 300～477 m3，部分地段形成地下水位降落漏

斗（图 6）。区域地下水位持续下降对湖淖湿地萎缩与

消失起到了关键性的促进作用，昔日的沙丘、沟谷、

滩地相间、湖淖、湿地点缀其中的生态格局已不复存

在。出现这些迥异往昔的现象，是地下水与湖淖天然

水力联系发生变异的具体表现。
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图 6    2023 年与 2003 年相比地下水位下降幅度图

Fig. 6    The decline of groundwater level in 2023 compared
with 2003

 

从流域尺度上讲，虽然地下水仍然保持补给秃尾

河的状况，但由于区域地下水位下降，秃尾河的基流

 

1990

NDVI均值=0.15

NDVI缓慢上升期 NDVI波动上升期 NDVI快速上升期

y=0.005 1x−10.06
变异系数=15.17%

1995 2000 2005

年份
降水量/mm 地下水埋深/m

2010 2015 2020

200

400

600

800

降
水

量
/m

m

地
下

水
埋

深
/m

1 000

1 200

NDVI

0

2

4

6

8

10

0

0.1

0.2

0.3

0.4

0.5

0.6

N
D

V
I

NDVI均值=0.19
y=0.008 7x−17.35
变异系数=20.34%

NDVI均值=0.34

y=0.013 2x−26.30
变异系数=24.01%
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Fig. 4    Temporal changes in NDVI, precipitation, and groundwater depth in the Tuwei River watershed
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Fig. 5    Changes of river base flow and precipitation over time in
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量处于衰减趋势。长序列水文资料的基流分析表明

秃尾河高家川断面径流量的 68% 来自流域上游地下

水的补给 [15]，枯水期河流中的径流量全由地下水补

给，二者呈线性关系[19]（图 7），即

∆Q = 1.046 4∆H+0.259 5 (r = 0.85) （1）

式中：∆Q——河流基流量的变化量/（m3·s−1）；

∆H——典型观测孔中地下水位变化量的平均值/m；

r——相关系数。
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图 7    秃尾河河流基流量变化与地下水位变化关系（以 1995 年为

参照年）[19]

Fig. 7    Relationship between base flow change of the Tuwei River
and groundwater level change (with 1995 as reference year)[19]

 

综上，区内河湖生态对流域地下水的变化较敏

感，一旦地下水位出现大幅度下降则会引起河流基流

量的减少、湖淖湿地萎缩和大泉流量衰减甚至消失等

水生态问题。因此，加强地表与地下、上游与下游、

左岸与右岸相互连通，维持中上游地下水位埋深小于

5 m 是流域健康河湖水生态基流的重要保障；建立集

约化、立体化高效农业体系，提高灌溉水源的利用效

率，是避免地下水位持续下降的重要途经。 

4.2.2    植被生态对水循环要素的响应

由图 4 可知，2000 年以来，区内整体降水量与植

被 NDVI 均呈增加趋势。尤其近 10 a 增加显著，降水

增加，助力增绿，凸显出植被生态与降水关系密切，但

波动比较大，表明稳定性较差、存在不确定性。实际

上，目前植被恢复仅是由黄土地变为“绿土地”，还不

是“深绿色”。恢复到稳定的“深绿色”植被生态系统受

到了水分条件的限制，特别在气候变化不确定性和降

水不平衡的背景下，植被系统持续恢复的不确定性依

旧存在，植被恢复的稳定性和可持续性是未来一个重

要的挑战。

地下水埋深和包气带水分为生态系统提供水源

保障，但植被根系的吸水和包气带拦截降水入渗补

给，在一定程度上引起地下水位下降和地下水补给量

的减少。根据课题组野外原位观测（图 8），一棵两年

生的沙柳，根系拦截了近 58% 的年降水量，同时在生

长过程中，根系不断向深部延伸，汲取包气带水分和

地下水 ，二者共同作用导致地下水位下降 1.2 m 左

右。而作为对照的无植被观测点，同期地下水位上升

0.3 m 左右 [20 − 21]。试验结果证实了植被生态对地下水

和土壤包气带水分的高度依赖性。但维持植被生态

系统健康和稳定的地下水位埋深和土壤包气带含水

率的适宜范围狭窄，偏离适宜区间会引起生态格局的

突变，体现了流域生态环境的脆弱性；与此同时，过度

植被恢复又造成地下水补给量和包气带含水率的减

少，进而加速地下水位的下降。如何协调植被恢复与

地下水补给量减少的矛盾是一个亟待解决的科学问题。
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图 8    沙柳生长与地下水位变化原位观测试验与结果

Fig. 8    In-situ observation experiment and results of Salix
psammophila growth and groundwater level changes

  

4.2.3    河滨带生态功能对流域生态环境质量的指示

作用

河滨带是一种特殊的生态类型，是河流水生生态

系统和陆地生态系统的交错过渡带，具有重要的生态

意义[22]。但目前国内外对其概念和边界还没有形成统

2024 年 王锦璇，等：秃尾河流域河流-地下水转化与生态效应  ·  43  ·



一认识 [23]，主要原因是流域尺度上河流与地下水转化

频繁，涉及影响范围和程度 [24]。本文认为对于三水呈

单向水循环的流域，河滨带是以河流为中心，横向上

与陆地生态系统相比，河流两侧生境梯度发生突变的

边界处，且丰、枯水期河流水涨水落能够影响的区

域。按照该定义，河滨带由河道水体和河漫滩构成，

其宽度随河漫滩的宽度变化而变化。河滨带生态特

征为：（1）水是河滨带生态系统的基础，水分来自上游

地表径流、河床下潜流、河滨带两侧的地下水补给；

（2）河滨带是流域水流、物流、能流和信息流的源与

汇，具有独特的生态功能，河滨带有足够且干净的水

分是流域生态系统健康的标志，因此加强水系连通和

保持流域合理的地下水位与优质的水质是保障；（3）
从上游到下游河滨带形成连续的廊道，沿三维方向有

较陡的环境梯度和高异质性的生态格局；（4）河滨带

存在特定的植物和动物；（5）对于三水呈单向转化的

水循环类型，河滨带水生态对区域地下水位和水质的

变化敏感。因此，河滨带生态功能对流域生态系统的

健康具有指示作用，可将河滨带生态功能作为区域生

态环境质量评价中一个重要的评价指标。

秃尾河流域两岸地下水补给河流，丰水期河道水

位大涨，水域范围波及高漫滩处；平、枯水期河道水仅

限于低漫滩或者河道中心。河滨带植被主要为芦苇、

杂草、人工乔木林；从上游到下游，河滨带都呈现湿环

境生态系统特征；横向上与农田-乔湿环境景观带为

临。河滨带生境梯度在纵、横和垂向三维空间的差异

性明显，主导着河滨带生态格局的异质性和生物的多

样性，河滨带在生态廊道、水环境污染防治、水土保

持和社会经济等方面发挥着重要的作用[25 − 27]。 

5    结论及建议

近 20 年来，受环境变化和流域河水-地下水转化

关系的影响，秃尾河流域生态格局经历了显著变化，

这一过程中既产生了正效应，也伴随着一些负效应。

（1）气候、水文条件和地质地貌控制秃尾河流域

生态的基本格局，空间上从上游到下游形成了湖群-
灌-草-乔湿环境生态系统、草-灌-乔-沙干环境生态系

统、矮化疏林-草干环境生态系统、农田-乔湿环境生

态系统和河滨带湿环境生态系统；流域大气降水、地

下水和河湖水水力联系密切，呈单向循环，水循环强

度控制流域生态格局演化的方向和时空变异趋势；人

类活动极大地改变了原生生态格局，在现代生态格局

演化上起着主导性作用。

（2）流域无论是河湖生态还是植被生态等对水分

都有很强的依赖性，三水转化与生态系统构成统一的

生态链，其间通过水分、能量和物质的交换，维持整个

流域生态系统的平衡。包气带含水率、地下水位埋深

以及地下水与河湖的交换通量在维持河湖生态基流

与水域面积、调节土壤包气带含水量和含盐量、维持

植被生存与演化等方面具有重要的作用。保持地下

水与河湖水系连通、调控沙区地下水位埋深在 1.5～
5 m 范围内是优化区域生态格局、建设适合于人类生

存与发展的可持续景观生态模式、维护生态系统稳定

与安全的核心。

（3）对于三水单向水循环流域，河滨带是流域水、

物质和能量集聚的源与汇和流域生态安全的屏障。

只要河滨带生态功能保持在良性状态，流域生态格局

就能维持其安全性和稳定性；反之，说明流域某些关

键性的控制因素发生了变异，例如区域地下水位持续

下降、水质恶化等。由此可见，在单向水循环系统的

流域中，河滨带生态功能的优劣对流域生态环境质量

有指示作用。

近 10 a 来，区内植被恢复与降水量增加和人工干

预与保护形成的叠加效应，是生态格局变化的主要驱

动力。但仍然存在耕地扩大与碎片化、大量开采地下

水等对生态系统的影响，特别在气候变化情况下，生

态格局变化的不确定性呈增强趋势，生态系统的稳定

性弱，目前的治理成效仍是初步的。提升沙区的生态

系统服务功能，必须在“人与自然和谐”及“山水林田

湖草沙生命共同体”的理念指导下，加强地表生态恢

复重建-地下水-河湖协同治理，许多问题需要科技的

支撑，例如：1）植被如何恢复、种什么以及怎么种；2）
景观生态异质性与生态空间镶嵌的稳定性；3）生态系

统演化的动力学机制与生态过程；4）河滨带水系连通

性与生态效应；5）流域生态稳定性的阈值体系构建，

生态系统监测、模拟、预警关键技术；6）流域景观生

态规划及多尺度协同优化设计等[24, 28 − 29]。

需要指出的是，受篇幅限制，本文仅讨论了地下

水水位和包气带含水率等对流域生态格局的影响，对

水质、煤矿开采等对生态格局影响以及生态格局的变

化引起蒸散发的变化涉及较少。
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