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白洋淀流域典型河流水化学季节性变化控制机理

杨　曦 ，蒋小伟 ，耿晓虹 ，马荣涛 ，姬韬韬 ，张志远

（中国地质大学（北京）水利部地下水保护重点实验室，北京　100083）

摘要：为查明白洋淀入淀河流水化学组分的季节性变化特征及控制机理，选择白洋淀流域的安格庄水库—中易水河—南拒

马河—白沟引河为研究对象，对比 2023 年雨季前、雨季和雨季后的河流水化学组成，利用描述性统计、Piper 三线图、Gibbs

图、端元图以及 PHREEQC 模拟等方法进行分析。结果表明：上游安格庄水库水化学组分在 2023 年具有明显的季节性变化

特征，在很大程度上控制了下游河流水化学组成；易水河与南拒马河交汇后水化学组分与易水河更接近，指示易水河流量

占优并控制了两者混合后的南拒马河水化学组分；易水河—南拒马河在雨季前、雨季后因流量小、风化作用弱表现出主要

离子随径流距离无明显变化，而在雨季水库大流量放水期间，河道内碳酸盐岩矿物的强烈风化导致主要离子浓度随径流距

离急剧增大。端元分析和 PHREEQC 模拟结果表明雨季河水主要发生的水文地球化学过程为方解石、石膏、石盐和白云石

的溶解/风化。作为直接汇入白洋淀的河流，白沟引河在雨季前的水化学组分受蒸发浓缩作用控制，而在雨季和雨季后的水

化学组分受南拒马河与白沟河混合作用控制。该研究加深了对河流水化学组分控制机理的认识，有助于分析白洋淀的水

化学季节性变化特征。

关键词：白洋淀流域；地表水；水化学；季节变化；化学风化
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Mechanisms controlling seasonal variations of hydrochemistry in a
typical river of the Baiyangdian Basin

YANG Xi ，JIANG Xiaowei ，GENG Xiaohong ，MA Rongtao ，JI Taotao ，ZHANG Zhiyuan
（Key Laboratory of Groundwater Conservation of Ministry of Water Resources, China University of

Geosciences (Beijing), Beijing　100083, China）

Abstract：To investigate the seasonal variation characteristics and controlling mechanism of the hydrochemistry of
rivers  that  flow into the Baiyangdian Basin,  the Angezhuang Reservoir—Zhongyishui  River—Nanjuma River—

Baigou Canal was selected to compare the hydrochemical composition of the rivers pre and post-rainy season in
2023. Various methods, including mathematical statistics, Piper diagrams, Gibbs diagrams, end-member analysis,
and  PHREEQC  simulation,  were  employed.  The  results  indicate  that  the  hydrochemical  characteristic  of  the
Angezhuang  Reservoir  exhibited  seasonal  variation  in  the  year  2023,  which  significantly  influenced  the
hydrochemistry  of  the  downstream  river.  At  the  confluence  of  the  Yishui  River  and  the  Nanjuma  River,  the
hydrochemical  components  were  predominantly  similar  to  those  of  the  Yishui  River,  indicating  that  the  Yishui 
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River's flow primarily governs the mixed hydrochemistry composition of the Nanjuma River. Before and after the
rainy season, due to low flow rates and weak weathering, the primary ions in the Yishui-Nanjuma River showed
minimal  changes  with  the  runoff  distance.  During  the  rainy  season,  however,  the  large  discharge  flow from the
reservoir  and  intense  rock  weathering  resulted  in  a  sharp  increase  in  the  concentration  of  major  ions  with  the
runoff distance. End-member analysis and PHREEQC simulation results indicated that the main hydrogeochemical
processes  occurring  in  river  water  during  the  rainy  season  were  the  dissolution/weathering  of  calcite,  gypsum,
halite, and dolomite. As a river that directly flows into Baiyangdian Basin, the hydrochemical composition of the
Baigou Canal was influenced by evaporation and concentration before the rainy season, while during and after the
rainy season,  it  was  controlled by the  mixing of  the  Nanjuma River  and Baigou River.  This  study enhances  the
understanding of the mechanisms controlling river hydrochemical composition and aids in analyzing the origins of
Baiyangdian Lake’s water quality.
Keywords：Baiyangdian Basin；surface water；hydrochemistry；seasonal variation；chemical weathering

 

河流作为全球水循环的重要组成部分，是连接陆

地和海洋物质和能量交换的主要介质，在元素地球化

学循环中发挥着至关重要的作用 [1 − 2]。分析河流中离

子的空间分布及水化学演化过程，可以揭示其溶质来

源以及人类活动对其影响 [3 − 4]，进而深入理解流域内

岩石化学风化过程 [5 − 6]。随着研究的深入，学者们发

现部分流域水体的水化学组成呈现出明显的季节性

动态变化 [7 − 9]。分析河流水化学组分的季节性变化的

控制机理有助于深入理解化学风化对极端气象事件

（如暴雨、洪涝等）中的响应机制。

关于河流水化学组成的季节性变化规律，大量学

者 [10 − 12] 基于单一位置的长期监测数据开展了研究。

结果表明，硅酸盐岩、蒸发盐岩和碳酸盐岩的风化速

率均随季节变化而改变，尤其是在雨季，蒸发盐岩和

碳酸盐岩的风化溶解对河流水化学组成的贡献比例

显著增加 [13 − 14]。部分学者 [15 − 19] 认为径流量是控制硅

酸盐岩和碳酸盐岩风化差异的关键因素，在高径流期

碳酸盐岩风化加强，而硅酸盐岩风化则受到限制。针

对长江、黄河等大型流域及我国南方岩溶地区的化学

风化问题，部分学者开展了基于多位置、多季节采样

的水化学演化研究 [20 − 25]。然而，我国华北地区小型流

域河流的季节性变化特征及其控制因素的研究较

少。此外，不同流量条件下河流水化学组分沿径流距

离变化的研究仍较为匮乏。

白洋淀是华北平原最大的淡水浅湖型湿地，拥有

“华北之肾”的美誉，具有重要的生态及经济价值。然

而，关于白洋淀入淀河流水化学组成的季节性差异缺

少认识。在安格庄水库的补水作用下，白沟引河是入

淀河流中常年有水的少数河流之一，也是白洋淀北部

唯一的入淀河流。“23•7”极端降雨事件以及降雨事

件后安格庄水库的调蓄作用为研究河流水化学组分

在不同流量条件下沿径流距离的变化提供了理想条

件。本研究基于 2023 年 7 月、9 月及 12 月对白洋淀

流域安格庄水库—中易水河—南拒马河—白沟引河从

上游到下游进行的高密度、多点位河水样品采集，分

析了雨季前后河水主要离子组成的时空变化，研究了

河流水化学的季节性变化及在其流量控制下的空间

差异，揭示了雨季前后河水水化学变化的控制机理，

以期为白洋淀流域水资源管理和生态环境保护提供

科学依据。 

1    研究区概况

白洋淀流域属暖温带季风大陆性半湿润半干旱

气候，夏季高温多雨，冬季寒冷干燥，年平均气温为

12.4 °C。研究区年平均蒸发量为 1 051 mm，年平均降

水量为 564 mm，大部分降水集中在雨季 6—9 月，占全

年降水量的 80%[26]。

白洋淀流域属海河流域大清河水系，地势西北高

东南低，流域内水流自西北山区向东南平原区流动，最

终汇入白洋淀湖泊，流域总面积约为 3.12×104 km2[27]。

上游水库流域内地表出露地层主要为中元古界蓟县

系高于庄组、雾迷山组、洪水庄组及铁岭组，岩性以

白云岩为主 [28 − 30]。下游为第四系松散堆积地层，自西

向东地层由薄变厚，沉积物包括沙土、黏土或沙土和

黏土的互层 [31 − 32]。白洋淀流域内河渠纵横，水系发

育，湖泊广布，主要的河流包括南拒马河、唐河、萍

河、漕河、瀑河等。南拒马河是白洋淀流域的主要河

道之一，也是白洋淀重要的天然入淀水源 [32]。南拒马

河发源于太行山腹地涞源县盆地，中游有易水河汇

入，下游有白沟河汇入。在新盖房枢纽处，分别通过

白沟引河和新盖房分洪道最终汇入白洋淀（图 1）。
雄安新区新盖房水利枢纽位于大清河北支南拒
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马河与白沟河汇流点以下的雄县新盖房村，是大清河

水系洪水下泄的关键性工程。2023 年 7 月 29 日至

8 月 1 日，雄安新区遭遇了“23•7”极端降雨事件，降雨

区平均降雨量达到了 289 mm。为了应对这场强降雨

可能引发的洪涝灾害，新盖房水利枢纽及时启动运行

分洪闸和新盖房分洪道，同时关闭了位于白沟引河上

游的引河闸，防止上游洪水进入白沟引河，为雄安新

区的安全度汛提供了重要的保障。8 月 30 日，引河闸

重新开启，同时上游水库泄水，白沟引河流量激增，流

量最高值达到了 197 m3/s（图 2）。“23•7”极端降雨事

件前后，新盖房水文站的河水水位始终高于周边监测

孔的潜水位，表明河水对地下含水层进行补给[33]。 

2    样品采集与分析

为研究白洋淀入淀河流的水化学组成，本文以易

水河—南拒马河—白沟引河为主要研究对象，并在区

域内进行采样分析。采样点分布于安格庄水库、中易

水河、南拒马河及白沟引河，形成了一条覆盖从上游

到下游的采样线，具体采样点位置如图 1 所示。2023
年 7 月上旬、9 月下旬和 12 月上旬分别对上述河段进

行了采样，依次代表雨季前、雨季和雨季后。7 月 3—

5 日，白洋淀从上游到下游共采集了 6 个样品，9 月

22—24 日以及 12 月 1—3 日进行了加密采样，以期捕

捉河流在较短径流路径上的水化学变化，取样点均为

16 个。此外，为研究汇流对河流水化学的影响，分别

在 7 月和 9 月采集上游南拒马河的 1 个样品，12 月采

集了上游白沟河的 1 个样品，共计采集样品 41 个。

HCO−3 CO2−
3

为了保证数据准确性，所有河水样品在采集后，均

在现场利用多功能参数测试仪测定了水温、pH 值和

电导率等参数，并通过酸碱滴定法测定了 和

的质量浓度。在实验室中，水样首先通过孔径为 0.2 μm

的滤膜过滤。过滤后的水样分为两部分：用于阴离子

测试的样品直接装入低密度聚乙烯瓶并密封保存；用
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NO−3

于阳离子测试的样品加入 6 mol/L 的二次蒸馏硝酸，

将其酸化至 pH<2 后密封保存。离子的测试均在中国

地质大学（北京）进行。阳离子（Ca2+、Mg2+、K+、Na+）

的测试利用电感耦合等离子体原子发射光谱仪（ICP-
AES， iCAP 6 300， Thermo）进 行 ， 阴 离 子 （Cl−、 、

SO2−
4 ）通过离子色谱仪（ICS-900，Dionex）测定。在实

验室测试阴阳离子的过程中，均等间距插入了标准样

品，以验证测试结果的准确性。所有样品的测试结果

均通过了阴阳离子平衡误差检验，绝对误差均在 10%
以内。样品水化学测试结果见表 1。

 
 

表 1    白洋淀流域主要河流的水化学特征

Table 1    Hydrochemical data of the main rivers in the Baiyangdian Basin
 

编号 采样点 月份
距水库
距离/km pH

质量浓度（ρ）/（mg·L−1） 电荷平衡
误差/%Ca2+ Mg2+ Na+ K+ HCO−3 SO2−

4 Cl− NO−3

S1 安格庄水库 7 0.0 9.70 20.8 24.3 11.6 1.8 62.0 53.5 15.7 3.5 7

N2 南拒马河 7 59.6 9.41 22.1 25.6 14.4 3.8 80.8 56.8 24.1 2.9 2

N5 南拒马河 7 75.9 10.14 20.7 26.1 17.5 3.3 71.4 64.5 28.1 3.1 3

B1 白沟引河 7 83.5 9.20 28.8 27.4 25.4 4.9 116.8 72.4 28.1 3.8 3

B2 白沟引河 7 86.2 9.06 30.2 26.8 28.1 4.9 114.7 73.5 30.6 4.6 4

B3 白沟引河 7 89.9 8.93 32.3 26.8 32.6 5.1 129.8 76.1 34.0 3.8 2

N0 南拒马河 9 — 8.17 25.8 4.0 5.4 5.0 88.0 16.3 13.4 5.7 −6

S1 安格庄水库 9 0.0 7.85 44.1 16.8 8.4 3.4 148.6 41.6 13.0 13.3 2

Z1 中易水河 9 1.2 7.82 43.1 15.9 7.3 3.4 158.0 34.4 12.1 11.6 1

Z2 中易水河 9 10.2 7.91 51.0 19.2 8.4 3.3 184.6 38.1 13.5 14.5 2

Z2 中易水河 9 20.6 8.06 67.1 25.5 11.2 3.7 245.2 54.6 27.4 23.0 −2

Z4 中易水河 9 27.9 8.19 71.2 30.8 13.4 4.0 223.6 63.6 31.6 28.7 −1

Z5 中易水河 9 37.4 8.07 74.9 32.2 14.1 3.8 238.7 66.3 33.0 30.5 1

Z6 中易水河 9 45.3 8.09 52.8 27.5 13.1 3.6 190.4 61.5 23.2 19.7 0

Z7 中易水河 9 47.6 8.21 70.6 29.9 17.0 4.0 227.2 73.3 34.3 27.2 −1

N1 南拒马河 9 48.6 8.23 70.4 29.0 16.7 4.3 240.2 71.5 34.0 26.7 −2

N2 南拒马河 9 59.6 8.16 63.7 29.5 18.5 3.6 213.5 68.5 34.8 23.7 0

N3 南拒马河 9 65.0 8.19 64.8 29.9 18.3 3.8 207.0 68.6 34.5 24.1 1

N4 南拒马河 9 72.3 8.06 66.0 28.7 17.8 4.4 214.2 66.0 34.0 21.7 1

N5 南拒马河 9 75.9 7.89 77.7 26.5 23.4 3.9 230.1 86.2 36.6 16.7 2

B1 白沟引河 9 83.5 8.57 73.4 24.6 21.9 3.8 200.5 83.5 36.4 11.6 2

B2 白沟引河 9 86.2 8.05 74.5 24.9 21.8 3.7 199.8 84.9 35.6 10.8 3

B3 白沟引河 9 89.9 8.12 73.9 24.9 21.9 4.1 209.9 84.8 35.7 11.7 3

N0 南拒马河 9 — 8.42 58.6 19.9 10.5 4.5 196.2 34.9 18.4 1.7 2

S1 安格庄水库 12 0.0 8.14 52.0 18.0 9.6 4.4 175.3 53.7 11.5 14.3 0

Z1 中易水河 12 1.2 8.02 52.8 18.5 9.8 4.3 177.4 52.9 11.4 14.1 1

Z2 中易水河 12 10.2 8.24 53.0 18.6 9.9 4.5 176.0 55.2 11.8 14.5 −2

Z2 中易水河 12 20.6 8.17 53.3 18.8 9.9 4.6 181.0 55.7 12.4 15.7 −1

Z4 中易水河 12 27.9 8.28 53.1 19.0 10.1 4.6 172.4 55.1 12.7 15.4 −1

Z5 中易水河 12 37.4 8.07 54.4 19.3 10.0 4.5 186.1 56.2 12.6 15.5 0

Z6 中易水河 12 45.3 8.15 53.7 19.2 10.0 4.2 189.7 55.2 12.7 15.5 −2

Z7 中易水河 12 47.6 8.31 56.9 20.6 12.1 4.5 194.0 60.9 16.2 18.5 −1

N1 南拒马河 12 48.6 8.29 59.1 21.1 12.8 3.3 202.7 60.7 20.0 19.6 −2

N2 南拒马河 12 59.6 8.21 61.6 22.3 15.1 3.7 207.7 62.8 22.7 20.4 −1

N3 南拒马河 12 65.0 8.01 61.8 22.4 15.8 4.0 199.8 64.0 24.2 21.0 −2

N4 南拒马河 12 72.3 8.38 63.3 23.7 17.0 3.9 211.3 63.0 26.4 22.9 0

N5 南拒马河 12 75.9 8.27 75.2 25.5 32.3 4.7 220.4 94.0 40.3 22.3 0

B1 白沟引河 12 83.5 8.17 72.0 25.1 32.2 5.7 225.0 85.7 42.7 24.0 0

B2 白沟引河 12 86.2 8.38 74.2 25.7 32.8 4.4 218.5 89.5 43.8 24.3 1

B3 白沟引河 12 89.9 8.14 74.0 25.8 33.2 5.4 211.3 87.3 43.9 24.6 −1
BG 白沟河 12 — 8.36 86.2 26.4 49.5 6.5 238.7 118.7 62.8 24.8 1
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白洋淀流域 2020 年土地利用现状数据来源于中

国科学院资源环境科学数据中心（http://www.resdc.cn）。
根据中国多时期土地利用遥感监测数据集，该区域的

土地类型被划分为耕地、林地、草地、水域、建设用地

和未利用地 6 类。 

3    结果
 

3.1    安格庄水库水化学组分的季节性变化

HCO−3
HCO−3

SO2−
4

NO−3

雨季前 ，安格庄水库中 的质量浓度仅为

62.0 mg/L，而在雨季和雨季后， 的质量浓度分别

增至 148.6，175.3 mg/L。相较之下， 的质量浓度在

雨季前后变化不大。雨季前，安格庄水库中 Ca2+的质

量浓度为 20.8 mg/L；在雨季和雨季后，Ca2+的质量浓度

分别增至 44.1，52.0 mg/L。雨季和雨季后 Mg2+的质量

浓度略低于雨季前的水平。因此，安格庄水库从雨季

前的水化学类型 SO4•HCO3—Mg•Ca 型转变为雨季的

水化学类型 HCO3—Ca•Mg 型，雨季后水化学类型又

转变为 HCO3•SO4—Ca•Mg 型。此外，雨季及雨季后，

安格庄水库中 的质量浓度显著增加，从雨季前的

3.5 mg/L 增加到雨季及雨季后的 13.3，14.3 mg/L。这

表明，在“23•7”极端降雨事件后，安格庄水库的水化

学组分发生了显著的变化，地表径流对上游水库的水

化学组分具有重要影响。 

3.2    河流水化学组分与流程关系的季节性变化

雨季前，易水河—南拒马河的水化学组分沿着流

HCO−3 SO2−
4

SO2−
4

HCO−3
HCO−3

HCO−3

程未出现明显变化，而当水流进入白沟引河后，河水

中 Ca2+、Na+、 、 的质量浓度和 TDS 随径流

距离显著增大（图 3）。在雨季和雨季后，各离子组分

明显表现出更强的空间和时间变异性。受白沟河与

南拒马河水化学组分差异的影响，南拒马河接受白沟

河汇入后，雨季及雨季后的 Ca2+、Na+、 的质量浓

度和 TDS 均显著增加，而 Mg2+的质量浓度在雨季和在

雨季后则分别表现为略微下降和上升。中易水河与

南拒马河交汇后，也在一定程度上改变了河水的水化

学组成。河水中各离子的质量浓度在 3 个季节表现

出明显差异。以 Ca2+和 为例，雨季前，上游河水

中 Ca2+和 的质量浓度保持在较低水平，而在雨季

及雨季后，Ca2+和 的质量浓度显著上升，这一现

象指示了雨季发生了碳酸盐岩的风化。

HCO−3

由于白沟河汇入南拒马河后，南拒马河的水化学

特征发生了显著变化，因此，为了更清晰地分析汇流

前南拒马河及其上游易水河的水化学特征，绘制了该

河段河水的 Piper 图（图 4）。从雨季前到雨季，上游河

水的水化学类型表现出明显的季节性变化（图 3）。具

体而言，从雨季前到雨季， 占总阴离子的比重从

40% 增加到 64%，优势阳离子从 Mg2+（占比 48%）转变

为 Ca2+（占比 51%），水化学类型从 HCO3•SO4—Mg•Ca
型变为 HCO3•SO4—Ca•Mg 型。雨季后的水化学类型

及 TDS 与雨季相比变化不大。因此，可以判断雨季及

雨季后发生了强烈的碳酸盐岩风化。
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图 3    研究区内河水化学组分随径流距离的演化规律

Fig. 3    Evolution patterns of river water hydrochemical composition along the flow distance in the study area
注：第一条竖线表示易水河与南拒马河交汇处，第二条竖线表示南拒马河与白沟河交汇处。
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图 4    易水河—南拒马河的 piper 图
Fig. 4    Piper diagram of the Yishui River—Nanjuma River

  

4    分析与讨论
 

4.1    上游水库水化学的控制因素分析

HCO−3

前人研究表明，雨季高强度的物理剥蚀可以显著

提高岩石化学风化速率 [19, 34]。“23•7”极端降雨事件发

生后，河流流量急剧增加，水库中 和 Ca2+等离子

的质量浓度显著升高，表明雨水的强烈冲刷使得流域

地表的风化作用增强。

根据不同矿物风化特征差异，利用 Ca2+/Na+与 Mg2+/
Na+关系图可以阐明各种风化作用对水体化学组分的

相对贡献[15]。以雨季前水库的水化学组成作为初始条

件，碳酸盐岩和蒸发盐岩作为两个端元，可以认为雨

季及雨季后的水库比雨季前经历了更强的碳酸盐岩

风化和蒸发盐岩溶解（图 5）。雨季后水库的水化学类

型转变为 HCO3—Ca•Mg 型，同样表现出受碳酸盐岩

NO−3

NO−3

风化控制的特征。此外，由于雨季地表径流的增大，

农业活动产生的污染物（特别是氮肥）通过地表径流

进入水库，导致水库中 的质量浓度在雨季和雨季

后显著上升，表明雨季期间径流引起的面源污染对

质量浓度的增加有显著影响。 

4.2    混合作用对河水水化学的控制作用

按照“河源唯远”原则，南拒马河源头为涞源县太

行山东麓，易水河在定兴县汇入南拒马河。由于缺少

流量观测数据，尚无法确定易水河对南拒马河流量

的贡献程度。然而，根据两河在混合前后的 Piper 图
（图 6），易水河与混合后的南拒马河水化学组分更加

接近，表明南拒马河的流量主要受易水河控制。以

9 月河水中的 Cl−和 Na+为例，假定不发生蒸发浓缩作

用，端元混合计算显示易水河对流量贡献比例分别为

98% 和 96%。

南拒马河在新盖房水文站上游 5 km 处接受白沟

河的汇入。两河在混合前后的 Piper 图（图 6）显示，白

沟河显著控制了汇入后南拒马河的水化学组成，进而

改变了白沟引河的水化学组成。因此，本文选择易水

河—南拒马河段作为研究河水水化学演化规律的对

象具有合理性。 

4.3    河道内部水化学季节性差异的控制机理 

4.3.1    农业污染

NO−3
NO−3

人类活动产生的污染源可以通过直接排放或大

气输送进入河流，例如农业化肥的使用、工业废水的

排放以及煤炭燃烧等因素。华北平原是我国重要的

粮食生产基地，分布有大范围的农田。根据白洋淀流

域 2020 年的土地利用现状图可知（图 7），水库库区主

要为林地，而下游河流周边则分布着大面积的耕地，

因此需要重点关注农业污染对河流水化学组成的影响。

研究表明 [35]，河流中 、Cl−和 Na+主要来源于农业生

产活动中使用的化肥。因此，结合河水中 ρ( )/ρ(Na+)
和 ρ(Cl−)/ρ(Na+) 的比值关系，可以识别出农业活动对

河流水化学的影响 [36 − 37]。由图 8 可知，雨季前，河流

水化学组成主要受岩石风化的控制，而在雨季及雨季

后，河流则受到了农业化肥的显著影响。

NO−3

NO−3

NO−3

雨季前安格庄水库 的质量浓度仅为 3.5 mg/L，
且随径流距离无明显变化，表明此时污染程度较低。

雨季后安格庄水库中 的质量浓度增加至 13.3 mg/L，
指示人类活动引起的面源污染在强降雨作用下被带

入水库 [38]。雨季期间，河流中的 质量浓度随径流

距离显著上升，从安格庄水库的 13.3 mg/L 增加到距

水库约 40 km 处的 30.5 mg/L，表明在水位较高、流量
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Fig. 5    Gaillardet diagram of the Angezhuang reservoir
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图 6    7、9、12 月不同河流交汇前后的 Piper 图
Fig. 6    Piper diagram of rivers before and after confluence in July, September, and December
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Fig. 7    Land use status of Baiyangdian Basin in 2020
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较大的情况下，河道内部的冲刷作用增强，土壤氮迁

移加剧，大量硝酸盐被带入河流。 

4.3.2    河流流量

河流的化学风化作用受多种水文因素的共同影

响，其中地表径流是影响流域化学风化的重要因素之

一。前人研究表明，地表径流越大，物理风化作用越

强，可以促使更多的新鲜岩石暴露并增加活性矿物的

表面积，从而加速化学风化过程[39 − 41]。

HCO−3

雨季后 （12 月 ），河流流量较低时 （平均流量为

47.9 m3/s），中易水河段主要离子如 Ca2+、Mg2+与

的浓度随径流距离均保持相对稳定；而在雨季（9 月），

河流流量较大时（平均流量为 114.0 m3/s），中易水河段

各主要离子的浓度均表现为随径流距离急剧增大。

这一现象表明，流量的大小显著影响了河流的水化学

组分。当地表径流量较小时，河流的化学风化作用受

到了显著的限制，这与前人的研究结论一致[42 − 44]。 

4.3.3    化学风化

NO−3

为了更深入地分析雨季河流水化学组分随径流

距离显著变化的控制机理，利用 PHREEQC 软件对雨

季（9 月）河水的演化过程进行模拟。根据前人关于研

究区内地层岩性及矿物类型的研究结果 [28, 30]，上游水

库库区出露的主要的岩石类型为中元古界蓟县系的

白云岩，下游为第四系松散沉积物。因此，选择方解

石、白云石、石膏、钠长石、钾长石、石盐、高岭石和

石英作为可能矿物相，CO2 作为参与反应的气体相，其

中硅酸盐矿物设置为强制溶解，黏土矿物设置为强制

沉淀，同时考虑了离子吸附作用（NaX、CaX2 、MgX2）

的影响。由于 Z1至 Z2 区间径流路径中 浓度的增

加量较小，因此可以认为 Z1 至 Z2 段河流在径流过程

中受到的人为活动影响较小，故选择 Z1 至 Z2 作为模

拟路径，选择 phreeqc.dat 作为热力学数据库，不确定

限设为 0.05，进行反向模拟。

SO2−
4 HCO−3

反向模拟的结果通常具有多解性。因此，本文通

过比较各个结果的异同，结合水化学演化分析、热力

学原理及模拟结果的数量级等因素，从中选择最符合

实际情况的解。结果表明（表 2），从 Z1 至 Z2，雨季河

水主要发生的水文地球化学过程为：方解石、石膏、

石盐和白云石发生溶解/风化，其溶解量分别为 4.640×
10−5，4.796×10−5，4.121×10−5，1.014×10−4 mol/L，向地表水

中贡献了 Ca2+、Mg2+、Na+、 、Cl−和 等离子。

同时，钠长石发生了微量溶解，生成高岭石等黏土矿物，

其溶解量仅为 8.408×10−6 mol/L。由于 K+浓度在径流过

程中的变化较小，本次模拟中未体现出钾长石的贡献。

 

表 2    水流路径上矿物的溶解-沉淀量
 

Table 2    Dissolution and precipitation
of minerals along the flow path /（mol·L−1）

 

矿物 溶解量（Z1→Z2）

方解石 4.640×10−5

石膏 4.796×10−5

石盐 4.121×10−5

白云石 1.014×10−4

CO2（g） 2.634×10−4

NaX —

CaX2 —

MgX2 —

钾长石 —

钠长石 8.408×10−6

高岭石 −4.204×10−6

石英 −1.682×10−5

　　注：正值表示矿物的溶解；负值表示矿物的沉淀；“—”表示未发生该
反应。
  

4.3.4    蒸发浓缩

地表水中主要的化学组分通常受岩石风化、大气

降水、蒸发浓缩等因素的影响，Gibbs 图可以直观反映

出地表水的主控因素 [45]。由图 9 可知，研究区内雨季

前易水河—南拒马河的 TDS 介于 178.6～208.6 mg/L
之间，ρ(Na+)/[ρ(Na++ρ(Ca2+)] 介于 0.36～0.39 之间。而

白沟引河的 TDS 介于 212.6～218.4 mg/L之间，ρ(Na+)/
[ρ(Na+)+ρ(Ca2+)] 介于 0.46～0.50 之间，普遍大于上游，

推测白沟引河受到了蒸发浓缩作用的影响。这一推

测与新盖房水文站气象数据显示 6 月蒸发量最大的

现象一致。雨季及雨季后，河流的 TDS 介于 206.7～
419.0 mg/L 之间，ρ(Na+)/[ρ(Na+)+ρ(Ca2+)] 介于 0.14～0.31
之间，表明岩石风化作用是雨季及雨季后河流水化学

组分的主要控制因素。 
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图 9    研究区河水的 Gibbs 图
Fig. 9    Gibbs diagram for river water in the study area
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5    结论

HCO−3
HCO−3

（1）2023 年雨季前，安格庄水库中 的质量浓

度为 62.0 mg/L，而在雨季和雨季后， 的质量浓度

分别增加到 148.6，175.3 mg/L。这一现象表明，在“23•7”
暴雨事件期间，安格庄水库流域的岩土体可能经历了

强烈的化学风化作用。上游水库的水化学组分显著

控制了下游河流在雨季及雨季后的水化学组分。该

现象为深入认识强降雨事件对河流水化学组分的控

制机理提供了科学依据，也为分析白洋淀水化学特征

的季节性变化奠定了基础。

（2）易水河—南拒马河流量较小时，主要离子浓度

随径流距离变化不大，表明流域的水化学组成在低流

量条件下较为稳定。在安格庄水库放水期间，河流流

量增大（取样期间新盖房水文站流量为 96 m3/s），主要

离子浓度均表现为随径流距离急剧增加，指示河道内

碳酸盐矿物发生了强烈的风化。该现象表明，河流流

量的季节性变化对河流水化学组成的空间分布特征

具有显著影响。
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