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Monte Carlo simulation for variable-density groundwater flow
through reduced-order model coupled with Gaussian process
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(1. Department of Geotechnical and Geological Engineering, Zijin School of Geology and Mining, Fuzhou
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Ministry of Natural Resources, Fuzhou, Fujian 350002, China; 3. Fujian Key Laboratory of Geohazard
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Abstract: Variable-density groundwater flow (VDGF) is jointly driven by hydraulic and density gradient, leading
to strong nonlinearity, large computational burden of numerical models, and therefore huge computational cost of

Monte Carlo simulation for uncertainty analysis. This study developed the reduced-order model (ROM) for VDGF
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and built the Gaussian process (GP) for simulating the numerical error of the ROM. The coupled model can obtain
solutions of head and salinity across the study domain while GP simulates observation information at limited
locations. Moreover, the coupled model can provide higher solution accuracies of head and salinity at the
observation locations than the ROM. A two-dimensional (cross-section) VDGF test case was considered, where
hydraulic conductivity was taken as a spatially random field. MC simulations were performed using three models,
including the full-system model, the ROM, and the coupled model, with corresponding MC strategies denoted as
FSMC, ROMC, and GP-ROMC, respectively. The results show that ROMC can be an alternative to FSMC for
conducting uncertainty quantification. The relationship between head (or salinity) and the dimensional of ROM
can be characterized using power functions with determinate coefficients larger than 0.99. GP-ROMC has higher
solution accuracy than ROMC, which indicates that GP is capable for simulating the numerical error of ROM. The
results in this study are significant for performing simulation, uncertainty quantification, risk assessment, and
parameter estimate in the context of groundwater.

Keywords: groundwater; variable-density groundwater flow; reduced-order model; Gaussian process; Monte

Carlo simulation
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Table 1 Regression results of power functions for characterizing the relationship between m and p, (or u.) obtained at each time step

y=a
t/min hy ¢
a B R a B R
20 -0.92(-1.03,-0.81) -0.49(-0.53, -0.46) 0.995 -1.67(-1.88,-1.46) -0.93(-1.00, —0.86) 0.994
40 -0.89(-0.99, —0.80) -0.50(-0.53, -0.47) 0.996 —1.35(-1.63,-1.08) —0.96(—1.05,-0.87) 0.991
60 -0.90(-1.00, 0.81) -0.50(-0.53,-0.47) 0.996 -1.06(-1.19,-0.93) —0.98(-1.02,-0.94) 0.998
80 —-0.94(-1.04,-0.83) -0.49(-0.53, —0.46) 0.994 —0.92(-1.05,-0.79) -0.97(-1.01,-0.93) 0.998
100 -0.99(-1.12,-0.86) —0.48(-0.53, -0.44) 0.992 —0.80(—0.98, —0.62) -0.97(1.03,-0.91) 0.996
120 -1.04(-1.20,-0.89) -0.47(-0.53,-0.42) 0.989 —0.68(—0.88, —0.50) -0.98(-1.05, 0.92) 0.996
140 -1.08(-1.25,-0.91) -0.47(-0.52,-0.41) 0.986 —0.59(-0.76,-0.41) —0.99(-1.05,-0.94) 0.997
160 -1.08(-1.25,-0.91) -0.47(-0.52,-0.41) 0.986 -0.47(-0.62,-0.32) -1.01(-1.05,-0.95) 0.998
180 -1.05(-1.20, -0.89) -0.47(-0.52,-0.42) 0.998 —0.33(-0.46,-0.20) -1.01(-1.06, 0.97) 0.998
200 -1.00(~1.13,-0.86) -0.48(-0.53,-0.44) 0.991 —0.15(-0.26,—0.03) -1.03(-1.07,-0.99) 0.999
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