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Finite strain elastoplastic constitutive model of saturated soil

WENG Tianci, XIONG Yonglin, HAN Zhe
(Institute of Geotechnical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China)

Abstract: During the construction of urban underground engineering projects, soils are typically in a saturated
state, and many underground engineering accidents are closely related to the large deformation behavior of
saturated soils. However, most constitutive models are developed under small strain conditions. To better
understand the mechanical characteristics of large deformation in saturated soils, this study applied finite strain
theory, combining hyper-elastic and modified Cambridge models. The concept of subloading and superloading
yield surfaces was introduced to describe the characteristics of overconsolidation and structure of soils. Utilizing
the advantages of numerical computation, a return mapping algorithm was employed to solve the nonlinear
response of the constitutive model and derive a consistent tangent stiffness matrix to accelerate convergence and
improve computational accuracy. In the principal stress space, a finite strain elastoplastic constitutive model for
saturated soils is established, which simultaneously considering structural characteristics, overconsolidation

properties, and large deformation mechanical behaviors. Through comparison between experimental data and
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model calculations, the accuracy of the constitutive model is verified. Additionally, the study investigated the

effects of initial overconsolidation ratio, initial structural characteristics, overconsolidation control parameters, and

structural control parameters on soil mechanical behavior by simulating isotropic triaxial drained shear tests and

triaxial consolidation tests. The results indicate that with increasing overconsolidation ratio, the peak strength of

the soil gradually increases, but the final volumetric behavior transitions from shear compaction to shear dilation.

As the initial structural characteristics of the soil strengthen, the peak strength significantly increases, and the

degree of strain softening also increases accordingly. Increasing the overconsolidation control parameter or

reducing the structural control parameter both lead to an increase in the peak strength of the soil.

Keywords: large deformation; overconsolidation; structural; finite strain; elastoplastic; constitutive model
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Fig.3 Comparison between the results of triaxial shear test of saturated undisturbed soil and the simulated values
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1 bl k Ho/kPa o M P./kPa Vier m m* R R
1 0.11 0.01 200 240 1.1 98 2.23 0.010 0.012 1.00 1.0
2 0.11 0.01 200 240 1.1 98 2.23 0.010 0.012 0.20 1.0
3 0.11 0.01 200 240 1.1 98 2.23 0.010 0.012 0.06 1.0
4 0.11 0.01 200 240 1.1 98 2.23 0.020 0.012 0.11 1.0
5 0.11 0.01 200 240 1.1 98 2.23 0.002 0.012 0.11 1.0
6 0.11 0.01 200 240 1.1 98 2.23 0.010 0.012 1.00 1.0
7 0.11 0.01 200 240 1.1 98 2.23 0.010 0.012 1.00 0.2
8 0.11 0.01 200 240 1.1 98 2.23 0.010 0.002 0.20 0.5
9 0.11 0.01 200 240 1.1 98 2.23 0.010 0.005 0.20 0.5

600 r
— R=1.00 260 — m=0.020
480
< <
g 360 £ 240
Ay R
120
120
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60
b VAL /% i) 72 /%
(a) ARML )3 el i 22 2 B 5 SHHOKS YRR S S 2
Fig. 5 Deviator stress versus axial strain of the triaxial drained
shear test
s
=
21
=
= S
g
=
=
20 1 1 1 1 1 1 ]
0 10 20 30 40 50 60 70
ey 22 /%

(b)) AT ARt 1) A2 [H1 2
B4 FEMBBESKRESEEHHELERL
Fig.4 Comparison of calculated results with different initial
overconsolidation state variables

Vs AR AS S TF (6 4R 8945 S S IE R 57K
BE o A5 A PE Y = E 25 R0 T A A R A 8
7, DAL PR AT 45+ 1 - Inv-InP il £k ] B i NCL;
ZE PR S B0 /N, Inv-InP i1 28 48 57 NCL #% B ',
FATER—RN IERT, e A Z E KA FLER L .

4 Hit

AR SCRIAT FR AR BRI D HE SR, S T 5f R A TR
B IE ST AR, 455 1T 6fF 18T A4 B A AR 28 13k (] il

0 10 20 30 40 50 60 70
A 1] N /%

6 ZHHHEK TR TG (A FR N 25- 2 o B 2F ph 4%

Fig. 6 Volume strain versus axial strain of triaxial
drained shear test

SPRR, AT T AT RE R G AL P | R [ 2 KA Y Y A
A A7 BRI AR 30 PR AR R R R S R R 2
T 96 R A R = Ak HE K BT 00 4256 i ik e 4 R R Ay
XFECAT AT, B UE T BT B AR A AR A AE B . e aE i
Xof =k A5 BB HE 7K 5 D70 356 AT = il 1 8 3 1 A
PHE T 4 DRI S RO AR LR A 52 . F 2450
.



2025 4F BRGS0 A PR A 0 e A R A BRI 5 - 101 -
24T — R=055 m=0.01 ZZ 3 #k ( References ) :
N —— R=0.20 m=0.01
2~ — R=0.11 m=0.02 D11 RTRRE, BHRZE, B, 45 0T T 2 0 5F %
, m=0.002 ) o
PR B o ok K SR B U] Hh h &S ) 5 AR A,
¢ 1.8
oy 2019, 15(4): 965 — 979. [ LEI Shengxiang, SHEN
= Yanjun, XIAO Qinghua, et al. Present situations of
L5y development and utilization for underground space in
cities and new viewpoints for future development[J].
1.2 L . , Chinese Journal of Underground Space and Engineering,
1 1 10° 2019, 15(4): 965 — 979. (in Chinese with English
FE1 Y F1/kPa
7 BEASHESLRIEARMYL abstract) |
S 5 — A1\ T £ ! < ar VL o
, T i o . (27 %, T UK. 5 b BT 4 a5 4 5 b7
Fig.7 Comparison of calculated results of triaxial consolidation

test of overconsolidation

2.4
- — R=0.2 m'=0.012
21k A — R™=0.5 m™=0.005
—— R=0.5 m™=0.002
= 18F
=
=
e
1.5+
1.2 1 1 1
10? 10° 104
FEe F)/kPa

B8 = MESRNITEERII
Fig. 8 Comparison of calculated results of structural triaxial
consolidation test

(1) 400 0y 8 ] 45 L 52 /0 8 1 B ke A B 4, LR B
h IS AR R Ak ) o R T 45 OB A B e A B A
TR A BT, AR IR S IV A AT i AR AR A o

(2)BEE A0 U 235 K9 1 B9 8, e A e {5 38
AR T, HW AR Ak B0 R B AL A BTG R B R [
SEPETH S B IR, LA B W (E 5 BE A B BT, i B
WA 0 5 62 68 7 ) il 1) 7 28 38 T D/ 5 i 2 20 4 1P 42
ZRGBIN, SERIVE T TR, A e R 55 SR B

(3) N[ k] 45 LU 14 Inv-InP 48 B 448 5 0F
45 2, I A 1 ) S HOHUR, Inv-InP il 28 5
AT IE [ 25 2 i R BPR . S5 A E - Inv-Inp T £ 0T
I R [ 452k AE AP ] 2 H0HU )N, Inv-Inp il 2R
I IE [ 4 2R ] e, SR R — AR TR, fiE
% 7K 32 B R A FLBR LE o

Je it RS TR A i 3 AR A 5 T AT R AT
ACE, TR IR A A A BRI 78 5 9B P AR 55 A BR ST Bk
PEARSS & REH S5 I EZATTE NS, (7 (8 3
B 2N S PR T AR 2, M =2 T AR S

[3]

[4]

[5]

[6]

[7]

5@ (1], i T8 AR, 2010, 39(3): 56 — 58. [ LI
Hongwei, WANG Guoxin. Causes and suggestion on deep
foundation excavation accident in some metro station[J].
Construction Technology, 2010, 39(3): 56 — 58. (in
Chinese with English abstract) ]

¥R, ST, 25 R BRI b 138 U7 FE A BT 5 48
i (7). FARBE E £ R, 2018, 55(1): 45 - 52. [ HOU
Yanjuan, ZHANG Dingli, LI Ao. Analysis and control of
collapse events during tunnel construction[J]. Modern
Tunnelling Technology, 2018, 55(1): 45 — 52. (in
Chinese with English abstract) ]

LU Ning, KHORSHIDI M. Mechanisms for soil-water
retention and hysteresis at high suction range[J]. Journal
of Geotechnical and Geoenvironmental Engineering,
2015, 141(8): 04015032.

RAE, Fem A, R, & SURM SR B K
M B B 25 RO B 5T (0], 7K 3CH BT R Hb S, 2020,
47(4): 158 — 166. [ ZHU Lijun, PEI Xiangjun, ZHANG
Xiaochao, et al. A study of water retention and ecological
effects of loess improved by double polymers[J].
Hydrogeology & Engineering Geology, 2020, 47(4):
158 — 166. (in Chinese with English abstract) ]

ARl S, BRME, 259, 55 AN PTREREE T &2 3 AL
B 53 AT 5 F KA AE AR S0 BT [0 7K SCHi BT T Ml
Jit, 2020, 47(3): 107 — 114. [ LI Tonglu, ZHANG Hui,
LI Ping, et al. Mode analysis of pore distribution and soil-
water characteristic curve of Malan loess under different
depositional  environments[J].
Engineering Geology, 2020, 47(3): 107 — 114. (in
Chinese with English abstract) |

AFHIE, AT BB, I, 45 AN RN ) B AR T A A
YA B A 0 7 2E R (0D K SO H BT TR M T, 2022,
49(6): 74 — 80. [ ZHAO Dangi, FU Yukai, HOU
Xiaokun, et al. Mechanical properties of saturated

paths[J].

Hydrogeology &

remolded loess wunder different stress


https://doi.org/10.1061/(ASCE)GT.1943-5606.0001325
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001325

- 102 -

7K SCHb BT TR b S

%24

[81]

L9l

[10]

[11]

[12]

[13]

[14]

Hydrogeology & Engineering Geology, 2022, 49(6): 74 —
80. (in Chinese with English abstract) |

MRk, i i, e, 45 5k b KRRtk
5530 B PR A AR DG (D0, o [ M BT S B IR AR,
2024, 35(2): 107 — 114. [ CHEN Jiale, NI Wankui,
WANG Haiman, et al. Correlation between soil-water
characteristic curve and collapsibility in undisturbed
loess[J]. The Chinese Journal of Geological Hazard and
Control, 2024, 35(2): 107 — 114. (in Chinese with
English abstract) ]

WrRga fh, 280, BT, S5 DA FLBR L XS & % ) R JE A
At KRR B B2 (0], 7K SC M R TR M R, 2022,
49(4): 47 — 54. [ CHEN Jiawei, LI Ze, HAN Zhe, et al.
Effect of initial void ratio on the soil water characteristics
of unsaturated soil at high suctions[J]. Hydrogeology &
Engineering Geology, 2022, 49(4): 47 — 54. (in Chinese
with English abstract) ]

KADLICEK T, JANDA T, SEJNOHA M, et al
Automated calibration of advanced soil constitutive
models. Part I: Hypoplastic sand[J]. Acta Geotechnica,
2022, 17(8): 3421 — 3438.

MEI Xuan, OLSON S M, HASHASH Y M A. Evaluation
of a simplified soil constitutive model considering implied
strength and pore-water pressure Generation for one-
dimensional (1D) seismic site response[J]. Canadian
Geotechnical Journal, 2020, 57(7): 974 — 991.

BIE. RTF LB A BB B 25 T R (T]. 55
+ T AR, 2009, 31(10): 1636 — 1641. [ LI Guangxin.
Some problems in researches on constitutive model of
soil[J]. Chinese Journal of Geotechnical Engineering,
2009, 31(10): 1636 — 1641. (in Chinese with English
abstract) |

XIE R, SO, i ae, 5 5T 0T ST R G 2k
JT W g B A KRR AR AR 5T (). K SCHE BT TR Ml
i, 2022, 49(1): 92 — 100. [LIU Qingling, JIAN
Wenbin, XU Xutang, et al. A study of the soil-water
reliability model in the whole matric suction range[J].
Hydrogeology & Engineering Geology, 2022, 49(1): 92 —
100. (in Chinese with English abstract) ]

RSN, B R, XU SCAk, 45 Bl 4 A g M e AL R AE
RSB PEA KR ARL B 5 (D). 24+ LA A4, 2022,
44(4): 678 — 686. [ LI Wugang, YANG Qing, LIU
Wenhua, et al. Structured quantitative characterization and
elastoplastic constitutive model of clay[J]. Chinese
Journal of Geotechnical Engineering, 2022, 44(4): 678 —
686. (in Chinese with English abstract) ]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

CHAKRABORTY T, SALGADO R, LOUKIDIS D. A
two-surface plasticity model for clay[J]. Computers and
Geotechnics, 2013, 49: 170 — 190.

TEARSR, J 5, RN, 55 G5 R PE AL b A AR AR 1 =i
IS (0] 4012, 2021,42(4): 991-1002. [ WANG
Huabin, ZHOU Yu, YU Gang, et al. A triaxial test study
on structural granite residual soil[J]. Rock and Soil
Mechanics, 2021, 42(4): 991 — 1002. (in Chinese with
English abstract) ]

LA, s, 8% [, S5, VLR A A PR 45 B
PR R 7 B AR EORE (], 55 £ 0%, 201534 ) 1): 19 -
24. [ KONG Lingwei, ZANG Meng, GUO Aiguo, et al.
Stress path effect on strength characteristics of Zhanjiang
strong structural clay[J]. Rock and Soil Mechanics,
2015(sup 1): 19 — 24. (in Chinese with English
abstract) |

HUELBA, WE . &5 6 M £ UH AR [J]. 55 + 052,
2015, 36(11): 3101 — 3110. [ ZHU Enyang, YAO
Yangping. A UH constitutive model for structured
soils[J]. Rock and Soil Mechanics, 2015, 36(11): 3101 —
3110. (in Chinese with English abstract) ]

HURA, WEAM - S LR AR AR A (0], 5
+ J1 2%, 2015, 36(7): 1915 — 1922. [ ZHU Enyang,
YAO Yangping. Constitutively modelling the compression
deformation of structured clay[J]. Rock and Soil
Mechanics, 2015, 36(7): 1915 — 1922. (in Chinese with
English abstract) |

PETEF, A e, R0, 45 B TR I 0 A4 IE H
g e AR R (] A L TR AR, 2019,
41(1): 50 — 59. [ LU Dechun, LI Xiaogiang, LIANG
Jingyu, et al. 3D elastoplastic constitutive model for
normally consolidated soils based on characteristic
stress[J]. Chinese Journal of Geotechnical Engineering,
2019, 41(1): 50 — 59. (in Chinese with English
abstract) |

PRAEAR, WhAE T, B, A RO 1) Rl - 3k
EAR AR A [J]. 50 1% 5 TR,
2020, 39(4): 793 — 803. [ LU Dechun, HAN Jiayue,
LIANG lJingyu, et al. Non-orthogonal elastoplastic
constitutive model of transversely isotropic clay[J].
Chinese Journal of Rock Mechanics and Engineering,
2020, 39(4): 793 — 803. (in Chinese with English
abstract) |

SROTHL, R AR R, B2 S0 RDRL Y 8 ik O AR BT
IBPEAR MO IE (1], 55 = TR 224, 2018, 40(6):
1103 — 1110. [ GUO Wanli, ZHU Jungao, PENG


https://doi.org/10.1007/s11440-021-01441-0
https://doi.org/10.1139/cgj-2018-0893
https://doi.org/10.1139/cgj-2018-0893
https://doi.org/10.1016/j.compgeo.2012.10.011
https://doi.org/10.1016/j.compgeo.2012.10.011

2025 4F R, S5 00T B B A% 08 P A R R T Tt 5 - 103 -
Wenming. Dilatancy equation and generalized plastic [27] BORJA R I, TAMAGNINI C. Cam-clay plasticity, part

[23]

[24]

[25]

[26]

constitutive model for coarse-grained soils[J]. Chinese
Journal of Geotechnical Engineering, 2018, 40(6):
1103 — 1110. (in Chinese with English abstract) ]

ik EAR, FIROK, R, 55 5 18 1 250 A& 1)
SRR E SR B AL (1], A 1 J1 %%, 2019, 40(3):
1030 — 1038. [ ZHANG Yuwei, WENG Xiaolin, SONG
Zhanping, et al. A modified cam-clay model for
structural and anisotropic loess[J]. Rock and Soil
Mechanics, 2019, 40(3): 1030 — 1038. (in Chinese with
English abstract) ]

BORJA R 1. Cam-clay plasticity, part II: Implicit
integration of constitutive equation based on a nonlinear
elastic stress predictor[J]. Computer Methods in Applied
Mechanics and Engineering, 1991, 88(2): 225 — 240.
HASHIGUCHI K. On the linear relations of v—In p and In
v—In P for isotropic consolidation of soils[J]. International
Journal for Numerical and Analytical Methods in
Geomechanics, 1995, 19(5): 367 — 376.

BORJA R I, TAMAGNINI C, AMOROSI A. Coupling
plasticity and energy-conserving elasticity models for
clays[J]. Journal of Geotechnical and Geoenvironmental
Engineering, 1997, 123(10): 948 — 957.

[28]

[29]

[30]

III: Extension of the infinitesimal model to include finite
strains [J]. Computer Methods in Applied Mechanics and
Engineering, 1998, 155(1/2): 73 — 95.

B/, BRI, VR H AL TE R T S5 1 AN R Tk 4 =0
A BRI 5 08 P A K B B AF 5T (0. 4 ) 2% 2 31
2021, 42(2): 156 — 179. [ HU Xiaorong, CAI Xiaofeng,
WANG Ritang. Approaches to the triple-shear elasto-
plastic constitutive models with finite deformations for
saturated clays in normal consolidation[J]. Chinese
Journal of Solid Mechanics, 2021, 42(2): 156 — 179. (in
Chinese with English abstract) ]

TER . b 15 W TR 5 1 I 20 300 3 0 A I
fH 487 [D]. T3 T K%, 2021. [ WANG Junmin.
Numerical analysis of progressive failure of slope under
the coupling effect of earthquake and rainfall[D].
Ningbo: Ningbo University, 2021. (in Chinese with
English abstract) ]
YE  Guanlin,

overconsolidation and structural behavior of Shanghai

YE Bin. Investigation of the

clays by element testing and constitutive modeling[J].

Underground Space, 2016, 1(1): 62 —77.
YRiE. 3 A A


https://doi.org/10.1016/0045-7825(91)90256-6
https://doi.org/10.1016/0045-7825(91)90256-6
https://doi.org/10.1002/nag.1610190505
https://doi.org/10.1002/nag.1610190505
https://doi.org/10.1002/nag.1610190505
https://doi.org/10.1061/(ASCE)1090-0241(1997)123:10(948)
https://doi.org/10.1061/(ASCE)1090-0241(1997)123:10(948)
https://doi.org/10.1016/j.undsp.2016.08.001

	1 饱和土有限应变弹塑性本构模型
	1.1 超弹性模型
	1.2 屈服函数
	1.3 返回映射算法
	1.4 一致切线刚度矩阵

	2 本构模型的对比验证
	3 模型参数讨论
	4 结论
	参考文献

