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摘要：水是岩石风化破坏的关键因素，高吸水性岩石一般更易受到风化破坏，但一直缺少原位评估岩石吸水能力的方法。

为探究岩石吸水能力的控制因素，以云冈石窟不同风化程度砂岩为研究对象，采用核磁共振技术测得岩石样品的孔隙度和

孔径分布，建立砂岩自由吸水率与密度、孔隙度、孔径的关系。结果表明：砂岩自由吸水率与密度呈线性关系，但两者的斜

率与风化程度有关；砂岩自由吸水率与孔隙度、小孔（0.1～1.0 μm）占比均呈正相关性，其中孔隙度是控制砂岩自由吸水率

的主要原因，孔隙结构是控制砂岩自由吸水率的次要原因；由于波速受孔隙度和孔隙结构控制，自由吸水率与波速有良好

的线性关系，因此提出可以通过原位测试波速估算岩体表层自由吸水率。本研究加深了对风化砂岩吸水性控制机理的认

识，并提出了一种可以原位获得石质文物自由吸水率的方法，对石质文物保护具有重要的指导意义。

关键词：孔隙度；吸水性；声波速度；孔径分布；核磁共振
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Abstract：Water is a key factor in the weathering and erosion of rocks, and highly porous rocks are generally more
susceptible  to  weathering.  However,  there  has  been a  lack of  in-situ  methods for  assessing the  water  absorption
capacity of rocks. To investigate the controlling factors of rock water absorption capacity, sandstone with different 
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degrees of weathering collected from the Yungang Grottoes were selected as the study material. Nuclear magnetic
resonance (NMR) technology was employed to test the porosity and pore size distribution of rock samples, and to
establish the relationship between the free water  absorption rate  of  sandstone and its  density,  porosity,  and pore
size. The results indicate that there is a linear relationship between the free water absorption rate and the density of
sandstone, with the slope of the relationship being influenced by the degree of weathering. Additionally, the free
water  absorption  rate  of  the  sandstone  is  positively  correlated  with  porosity  and  the  proportion  of  small  pores
(0.1－ 1.0  μm),  with  porosity  being  the  primary  controlling  factor  and  pore  structure  being  the  secondary
controlling  factor.  This  study  deepens  our  understanding  of  the  mechanisms  controlling  the  water  absorption  of
weathered sandstone. Furthermore, since wave velocity is also influenced by porosity and pore structure, a good
linear  relationship  was  observed  between  the  free  water  absorption  rate  and  wave  velocity.  Therefore,  it  is
suggested that the free water absorption rate of rock mass can be estimated by in-situ testing of wave velocity.
Keywords：porosity； water  absorption； acoustic  wave  velocity； pore  size  distribution； nuclear  magnetic
resonance

 

岩石风化是指表层岩石在物理、化学和生物等因

素作用下发生物理崩解和化学分解的过程 [1 − 2]，在地

球生态系统和地貌演化中发挥着不可忽视的作用 [3 − 4]，

尤其对石质文物而言是一大危害 [5 − 8]。对于完全干燥

的岩石，即使温度发生大范围波动也不会产生物理和

化学风化 [9 − 11]。由于岩石通常具有吸水能力，雨水淋

湿 [12 − 13]、水汽凝结 [14 − 16] 和毛细上升 [17 − 18] 等作用都会

增大岩石含水率。例如前人 [19] 指出石窟洞内的大气

湿度会直接控制浅层砂岩的含水率。干湿交替条件

下，岩石中的水分会引发物理、化学和生物风化[9, 20 − 24]。

量化岩石的吸水能力及其控制因素有助于为石质文

物风化防治提供决策依据。

如何利用无损的原位测试方法表征岩石吸水能

力是岩石风化、工程地质等领域亟需解决的技术问

题。岩石自由吸水率是表征岩石吸水能力的最常用

指标，也是衡量岩石强度的重要指标之一 [25]，是指长

时间浸泡条件下吸收的水分体积与岩石总体积的比

值 [26]，属于有损检测方法。Ozcelik 等 [25] 建立了多种岩

石自由吸水率与密度的负相关性，但由于密度无法无

损获得，无法用于无损估算岩石自由吸水率。岩石的

声波速度可以通过无损的原位测试方法获得，与岩石

的孔隙结构、温度、节理、裂隙等密切相关 [27 − 28]。在

岩性相同的情况下声波速度受孔隙结构控制 [26]，且与

孔隙度 [29] 呈负相关性、与密度 [30] 和抗压强度 [28] 呈正

相关性。黄继忠等 [31] 研究指出云冈石窟砂岩孔隙度

作为控制水分进入岩石的关键因素，与渗透率和水汽

扩散系数有密切的正相关性。由于岩石自由吸水率

也受孔隙度[32] 和孔隙结构[33 − 34] 的控制，声波速度的无

损检测优点及其与孔隙度、孔隙结构的相关性，为利

用声波速度间接获得岩石自由吸水率提供了可能。Park
等 [35] 提出砂岩在冻融循环的作用下声波速度与自由

吸水率呈负相关性，然而目前尚未探究在自然受风化

破坏的情况下，二者之间的关系。

本文以云冈石窟所在山体为研究区，采集水平方

向不同风化程度的砂岩开展自由吸水率和密度测试，

采用核磁共振（nuclear magnetic resonance，NMR）技术

测定岩样的孔隙度和孔隙结构。在分析自由吸水率、

波速控制机理的基础上，建立波速与自由吸水率的定

量关系，提出了一种利用波速估算岩体表层自由吸水

率的方法。 

1    研究区概况

云冈石窟位于山西省大同市，气候类型为大陆季

风性半干旱气候，冬季寒冷干燥，夏季炎热多雨。云

冈石窟拥有洞窟 252 个，大小石雕造像有 5.1 万余尊，

具有极高的艺术文化价值，被列为世界文化遗产 [36]。

然而在自然和人为因素影响下，云冈石窟多数洞窟窟

内佛像、壁面遭受了严重的风化破坏（图 1）。
云冈石窟山体以中粗粒长石砂岩为主，存在少量

颗粒较细的粉砂岩和页岩[37]。砂岩的多孔结构有利于

吸收和储存水分，雨季的降水入渗和水汽在砂岩表面

或内部凝结是造成云冈石窟风化破坏的重要原因[19, 38]，

但目前尚无云冈石窟砂岩孔隙结构和吸水性的定量

研究。 

2    材料与测试方法
 

2.1    砂岩风化样品的采集和制备

本次测试岩样取自云冈石窟 3 窟加固工程的 6 个
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水平孔。将采集的岩样加工为直径为 2.5 cm，高为 5 cm
的规则圆柱状岩芯，共获得 60 个样品。图 2 为部分处

理好后的岩芯。测定所有岩芯密度、自由吸水率后，

选取 22 个岩芯进行核磁共振测试。
  

2.5 cm

5 cm

图 2    处理后的部分砂岩样品

Fig. 2    Some of the processed sandstone samples
  

2.2    密度和自由吸水率测试

本次研究采用精度为 0.001 g 的天平测量岩石样

品质量（mr）, 采用精度为 0.05 mm 的游标卡尺测量圆

柱体岩样高度（h）和直径（d）。计算岩石密度（ρ）：

ρ =
1
4

mr

πd2h
（1）

ωB

岩石自由吸水率是表征岩石在正常大气压下吸

水能力的指标，可以用质量含水率或体积含水率表

示。依据《工程岩体试验方法标准》（GB/T 50266—

2013）[39]，质量吸水率（ ），定义为岩石浸水 48 h 吸水

后的质量（m0），与烘干后岩石的质量（ms）之比减 1：

ωB =
m0−ms

ms

=
m0

ms

−1 （2）

ωV

为直观对比砂岩自由吸水率和孔隙度之间的关

系，将质量吸水率转化为体积吸水率（ ）：

ωV = ωB×ρd （3）

式中：ρd——砂岩干密度/（g·cm−3）。 

2.3    核磁共振测试

自 1946 年哈佛大学 Purcell 和斯坦福大学 Bloch
发现核磁共振现象以来，NMR 技术因其具有快速准

确表征岩石孔隙度和微观孔隙结构的能力在水文地

质、岩土力学和油气储层等领域广泛应用[40 − 43]。NMR
技术的基本原理是：岩石孔隙水中氢原子核在外加磁

场的作用下会发生共振，在共振过程中由于碰撞能量

不断消减，通过测量核磁共振信号强弱及能量达到

稳定所用的时间即弛豫时间可以间接表征岩石内部

的孔径分布情况[44]。通常共振信号量与孔隙内部赋存

的水量成正比，氢核的弛豫时间（T2） 与孔隙半径呈正

比 [45]。当所测岩石内部孔隙被水充满时，测得的共振

信号量与孔隙体积成正比，所以低场核磁共振测试可

以反映岩石内部的孔径分布情况。此外通过测试获

得的 T2 谱图还可以反映岩石内部孔径分布特征：例如

峰值的位置对应孔径的尺寸，峰的面积对应一定范围

内的孔隙体积，峰的形状对应各类孔隙的连通性。光

滑的峰通常表示孔隙具有良好的连通性，不规则或分

散的峰可能表示孔隙之间缺乏有效的连接[46]。

本次测试在中国地质大学 （北京 ）煤储层物性

分析实验室完成，仪器型号为苏州纽迈公司生产的

MacroMR 低场核磁共振仪。参数设定如下：主磁场

为 0.047 T，氢核共振频率为 2 MHz，磁体控制温度为

35 °C，射频功率 300 W，扫描次数（NS）为 32 次，回波

间隔（TE）为 0.3 ms，等待时间（TW）为 3 000 ms，回波

个数（NECH）为 8 000 个。

测试的具体过程为：（1）将岩芯放置烘箱进行烘

干，温度设置为 105 °C，时间设置为 48 h；（2）烘干后

将岩芯放入高压容器，对容器进行抽真空处理，再以

30 MPa 高压向容器中注入蒸馏水；（3）饱和完成后，擦

干岩芯表面的水分进行低场核磁共振的测量。 

2.4    声波速度测试

岩石声波速度实验采用 ZBL-U520 非金属超声检

测仪，厂家为北京智博联科技有限公司。其基本原理

是在一定的压力和温度条件下测试声波穿过岩样的

时间，通过岩样长度除以穿透时间获得岩样的波速：

vp =
L
tp

（4）

式中：vp——岩体的纵波波速/（km·s−1）；

L——岩样长度/mm；

tp——纵波穿过岩体经历的时间/μs。 

 

图 1    云冈石窟窟内佛像风化破坏现象

Fig. 1    Deterioration of buddha statues in a cave of
the Yungang Grottoes
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3    结果

根据 60 个样品的自由吸水率和密度测试结果，发

现岩石样品自由吸水率的均值为 8.37%，最大值和最

小值分别为 11.04% 和 4.71%。密度的均值为 2.42 g/cm3，

变化范围为 2.28～2.56 g/cm³。依据风化岩分带指标

定量范围值法（TR 分带法）[47] 确定强风化砂岩与弱风

化砂岩的密度临界值为 2.43 g/cm3。通过统计发现 36
个样品的密度小于 2.43 g/cm3，属于强风化砂岩，自由

吸水率均值为 9.59%；24 个样品的密度大于 2.43 g/cm3，

属于弱风化砂岩自由吸水率均值为 7.26%，明显小于

强风化砂岩。

表 1 为 22 个岩石样品自由吸水率、波速、密度、

孔隙度的测试结果以及微孔（<0.1 μm）、小孔（0.1～
<1 μm）、中孔（1～10 μm）和大孔（>10 μm）的占比情况。

孔隙度分布范围为 7.69%～13.62%，均值为 10.80%。

所有样品的自由吸水率均小于孔隙度。波速平均值为

3.12 km/s，最大值和最小值分别为 2.50，3.68 km/s，波速

最小值样品与自由吸水率最大值样品存在对应关系。
 
 

表 1    岩石样品的物理参数及各类孔隙占比

Table 1    Physical parameters and proportions of different types of pores of the rock samples
 

岩芯编号 自由吸水率/% 波速/（km·s−1） 密度/（g·cm−3） 孔隙度/% 微孔占比/% 小孔占比/% 中孔占比/% 大孔占比/%

1 9.44 3.38 2.33 12.28 0.21 25.46 54.47 19.86

2 8.17 3.57 2.39 10.59 5.53 23.91 53.92 16.65

3 9.10 3.47 2.37 10.50 0.00 21.59 55.62 22.79

4 8.86 3.38 2.38 10.41 0.25 12.13 59.96 27.65

6 8.67 2.91 2.44 10.20 1.40 32.96 45.37 20.27

10 8.74 3.14 2.42 10.65 0.00 17.33 56.35 26.32

16 9.13 3.09 2.40 10.72 0.00 20.40 53.26 26.35

21 8.83 3.22 2.44 10.64 1.33 21.91 50.31 26.45

111a 9.51 3.13 2.36 10.94 2.87 26.31 57.41 13.40

111b 9.49 2.90 2.33 11.34 6.17 28.11 52.48 13.24

112a 10.67 2.75 2.32 13.06 1.75 35.40 44.09 18.76

112b 10.10 2.74 2.43 12.81 2.64 42.76 41.59 13.01

136a 9.42 2.98 2.37 9.78 0.00 21.00 61.13 17.87

136b 9.36 2.90 2.40 9.84 3.96 25.27 59.33 11.45

136c 9.01 3.13 2.36 9.26 0.00 19.81 59.46 20.73

137a 8.90 3.29 2.41 9.16 0.00 29.94 52.98 17.08

137b 9.02 3.68 2.41 12.40 7.13 38.00 43.01 11.87

137d 9.06 3.47 2.37 10.51 5.57 35.05 51.10 8.28

39a 9.88 2.75 2.29 13.62 4.31 28.42 49.45 17.82

39b 10.77 2.50 2.30 12.60 4.85 33.55 48.65 12.94

40a 8.66 3.29 2.45 7.69 0.00 31.94 57.80 10.26
40b 8.84 3.03 2.41 8.68 7.08 34.46 48.80 9.66

 

岩石样品中微孔体积占比范围变化较小，为 0～
7.13%；中孔变化范围较大，为 41.59%～61.13%；小孔

变化范围为 12.13%～35.40%；大孔变化范围为 8.28%～

27.65%。 

4    讨论
 

4.1    自由吸水率与密度的关系

通过绘制自由吸水率和密度的关系图（图 3）可以

发现自由吸水率与密度整体呈负相关，与 Ozcelik 等 [25]

的结论一致。依据风化岩 TR 分带法 [47]，强风化砂岩

与弱风化砂岩的密度临界值为 2.43 g/cm3。对于密度

大于 2.43 g/cm3 的弱风化岩石样品，自由吸水率与密度
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图 3    不同风化程度砂岩的自由吸水率随密度变化规律

Fig. 3    Variation of free water absorption rate with density of
sandstone with different degrees of weathering
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之间存在很好的相关性，相关系数（R2）高达 0.857 7，
两者的斜率为−34.78；对于密度小于 2.43 g/cm3 的强风

化岩石样品，自由吸水率与密度之间也存在相关性，

但 R2 仅为 0.397 4，且两者的斜率仅为−10.62。
这是因为强风化砂岩由于受到风化作用内部存

在较多的风化裂隙和大孔，大孔的比表面积小，没有

足够的毛细吸力持水，所以相比于弱风化砂岩，强风

化砂岩自由吸水率虽然较大，但小于预期的自由吸水

率。如果利用弱风化岩石的自由吸水率随密度变化

规律预测强风化岩石的自由吸水率，显然会高估其自

由吸水率。可见，对于风化程度存在明显差异的砂

岩，无法用单一函数刻画自由吸水率与密度的关系。 

4.2    孔隙度和孔隙结构对自由吸水率的控制作用

为探究砂岩自由吸水率和波速的控制因素，选择

部分岩石样品利用 NMR 技术测得孔隙度和孔径分

布。分析表明，砂岩自由吸水率和孔隙度之间存在较

好的线性正相关关系（图 4a），表明孔隙度对自由吸水

率有重要控制作用。

通过回归分析发现孔隙结构对自由吸水率也有

控制作用。线性回归中的 t 检验是对单个变量系数的

显著性检验，p 值是衡量该系数是否显著不同于 0 的

标准。如果 p 值小于 0.05 表示该自变量对因变量有

显著的控制；如果 p 值大于 0.05 小于 0.10 表示该自变

量对因变量有一定的影响。通过回归分析建立 4 种

孔径与自由吸水率的线性关系，发现吸水率与微孔、

大孔占比之间线性关系的显著性 p 值高达 0.60 和 0.37，
表明微孔、大孔对自由吸水率无明显贡献，其原因为

岩石自由吸水状态下水分很难进入微孔（<0.1 μm），同

时大孔（>10 μm）很难持水。砂岩自由吸水率与小孔

占比呈线性正相关，与中孔占比呈线性负相关（图 4b），
显著性 p 值分别为 0.06 和 0.09。小孔和中孔对自由吸

水率的控制机理可以解释为小孔比表面积大，有利于

岩石吸水，中孔比表面积小，没有足够的毛细吸力持

水，不利于岩石持水。由于自由吸水率—孔隙度线性

关系的 R2 大于自由吸水率—小孔和中孔占比线性关

系，本文认为孔隙度是控制砂岩自由吸水率的主要原

因，孔隙结构是控制砂岩自由吸水率的次要原因。

自由吸水率随孔隙度线性变化的斜率在一定程

度上可以表征具有吸水、持水能力孔隙（0.1～10.0 μm）

的占比，斜率大表示具有吸水、持水能力的孔隙（0.1～
10.0 μm）占比大。云岗石窟砂岩的斜率为 0.64，略小

于小孔和中孔占比平均值 80.1%。其他 3 种岩石自由

吸水率随孔隙度变化斜率见表 2。大理岩和灰岩的斜

率分别为 0.44 和 0.47，与这 2 种岩石较为致密不利于

吸水密切相关。例如，文献 [48] 提出灰岩微孔占比为

34%～88%。安山岩的斜率高达 0.83，推测其孔隙有利

于持水。Çelik 等 [17] 研究认为安山岩的小孔和中孔占

比高达 88.20%。
  

表 2    不同岩石自由吸水率随孔隙度的变化斜率

Table 2    Slopes of the variation of free water absorption rate
with porosity for different types of rocks

 

岩石类别 k

云岗砂岩 0.64
灰岩 0.47

大理岩 0.44
安山岩 0.83

　　注：k表示自由吸水率随孔隙度的变化斜率；灰岩、大理岩和安山岩k值
据文献[25]；云岗砂岩的k值为本次研究结果。
  

4.3    吸水性与波速的定量关系对原位预测自由吸水

率的启示

纵波在穿过裂隙和孔隙时存在一定的反射和折

射，微小孔数量过多会增大声波在砂岩内部的传播阻

力，导致波速较小，而中孔数量少会减小声波在砂岩
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图 4    砂岩自由吸水率随孔隙度（a）及小、中孔占比（b）的变

化规律

Fig. 4    Variation of free water absorption rate of sandstone with
porosity (a), and proportion of small pores and medium-sized

pores (b)
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内部的传播阻力，导致波速较大 [49]。因此，砂岩波速

与孔隙度及小孔、中孔占比的对应关系和自由吸水率

与孔隙度及小孔、中孔占比的对应关系刚好相反，即

砂岩波速和孔隙度之间呈线性负相关（图 5a），与小孔

占比呈负相关，与中孔占比呈正相关（图 5b）。
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图 5    砂岩波速随孔隙度（a）及小孔、中孔占比（b）的变化规

律

Fig. 5    Variation of wave velocity of sandstone with porosity (a)
and proportion of small pores and medium-sized pores (b)

 

由于孔隙度、孔隙结构对波速和自由吸水率均有

控制作用，统计发现自由吸水率与波速之间存在较好的

线性关系（图 6），R2 达到 0.749 2，显著性 p 值小于 0.01，

且不存在图 3 自由吸水率—密度关系分段特征。徐松

林等 [50] 通过研究指出，对于岩性较为均匀的岩石，波

速的尺度效应可以忽略。因此，根据波速与吸水率之

间的良好线性关系，可以采用无损方法在野外现场多

个不同部位原位测试石窟表层砂岩的波速，从而确定

砂岩表层自由吸水率在空间上的相对大小，判断易风

化程度。 

5    结论

（1） 砂岩自由吸水率与密度整体呈线性负相关关

系，但强风化砂岩与弱风化砂岩自由吸水率随密度变

化的斜率存在较大差异，因此密度不适合用于估算岩

石吸水性。

（2） 砂岩自由吸水率受孔隙度和孔径控制，其中

砂岩自由吸水率与孔隙度、小孔（0.1～1.0 μm）占比呈

线性正相关性，与中孔（1～10 μm）占比呈线性负相关

性。对比两者的相关系数大小发现孔隙度是控制砂

岩自由吸水率的主要原因，孔隙结构是控制砂岩自由

吸水率的次要原因。

（3） 砂岩波速与孔隙度、小孔（0.1～1.0 μm）占比

呈负相关。由于砂岩的自由吸水率和波速具有较好

的线性负相关关系，可以在野外原位测试波速从而估

算岩石表层自由吸水率的空间分布，评估易风化程度。
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