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摘要：土石混合体在工程中广泛应用于填筑和路基等领域，其力学行为对工程结构的稳定性和安全性具有重要影响。文章

通过对含石量相似但细粒土为非黏性和黏性 2 种不同材料的试样，采用室内三轴试验开展相关研究，研究细粒土特性及试验

加载速率对土石混合体力学行为的影响。结果表明：（1）在排水条件下，细粒土体为非黏性的试样展现出较高的强度特征，

而在不排水条件下，细粒土体为黏性的试样则表现出更高的强度，这一发现凸显了细粒土特性在不同排水条件下对土石混

合体强度的重要影响；（2）加载速率变化对土石混合体力学行为的显著影响，较快的加载速率导致内部块石颗粒更剧烈的运

动、旋转和更频繁的破坏，从而影响了土石混合体的宏观力学特性。研究成果可为土石混合体工程的设计和施工提供参考。
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Abstract：Soil-rock  mixtures  are  widely  used  in  engineering  for  filling  and  subgrade  applications,  with  their
mechanical behavior playing a critical role in the stability and safety of engineering structures. This study utilized
two types of fine-grained soils, non-cohesive and cohesive, to construct the soil-rock mixtures with similar stone
content; indoor triaxial tests were conducted to investigate the effects of fine-grained soil type and loading rate on
the mechanical behavior of soil-rock mixtures. The results show that under drained conditions, the strength of the
soil-rock  mixture  containing  non-cohesive  soil  is  higher  than  that  of  cohesive  soil,  while  under  undrained
conditions,  the  strength  of  the  soil-rock  mixture  containing  cohesive  soil  is  higher.  Variations  in  loading  rate
significantly  impacted  the  mechanical  behavior  of  soil-rock  mixtures,  with  faster  loading  rates  causing  more 
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intense  movement,  rotation,  and  frequent  damage  to  internal  stone  particles,  ultimately  influencing  their
macroscopic mechanical properties. This study provides valuable insights for the design and construction of soil-
rock mixture engineering.
Keywords：soil-rock mixture (S-RM)；triaxial test；fine soil；loading velocity；mechanical behavior

 

土石混合体（soil-rock mixtures，S-RM）是由具有一

定尺寸的强度较高岩块、强度相对较软的土体充填成

分及相应的孔隙等组成的多相体系 [1 − 2]，这种岩土材

料的物理力学性能与均质岩土体有显著差别，并且极

易受其内部组成结构和其他因素影响。土石混合体

在自然界中分布广泛，由于其复杂的物理力学行为特

征，有时会引起地质灾害，进而给工程及临近居民带

来灾难 [3 − 5]。据自然资源部统计资料，2023 年，全国共

发生滑坡、崩塌、泥石流等地质灾害 3 666 起，其中土

石混合体滑坡占据了较大比例。这不仅给人民的生

命和财产造成了极大的损失和威胁，同时也制约着经

济社会的可持续发展，如 2024 年  5 月  1 日夜间  2 点，

广东梅州—大埔（梅大）高速填方路基边坡失稳，导致

了坍塌和滑坡灾害，造成了 48 人死亡，30 人受伤[6]；2015
年 12 月 20 日发生的深圳光明新区特大滑坡事故，红

坳淤泥渣土发生大规模渣土堆填物滑坡，造成  73 人
死亡，17 人受伤，33 栋建筑物被损毁、掩埋，事故直接

经济损失 8.81 亿元 [7]；1986 年雅鲁藏布江樟木乡发生

土石混合体滑坡，伤亡 30 余人，8 000 余人生命财产安

全受到威胁，总损失超过 8 亿 [8]；2005 年大渡河丹巴县

建设街后山土石混合体滑坡发生强烈变形，整体呈下

滑趋势，威胁大半个丹巴县城，严重威胁 4 620 余人的

生命财产安全[8 − 9]。

国内外许多学者针对土石混合体复杂的物理力

学特性，开展了一系列研究。成浩等 [10] 采用离散元法

研究了含石量对土石混合体崩塌运动的影响。邵忠

瑞等 [11] 通过大型室内剪切仪开展了不同含石量的剪

切试验，研究含石量对软岩土石混合体力学特性的影

响。Vallejo 等 [12] 开展了土石混合体的直剪试验研究，

结果表明试样中岩块含量通常会影响 S-RM 的物理力

学行为，抗剪强度取决于 S-RM 中大颗粒岩块的相对

含量。吴红波等 [13] 分别开展了室内三轴试验和数值

模拟试验研究，结果均表明试样内摩擦角随含石量增

大而增大，黏聚力则随含石量增大呈现出先增大后减

小的趋势，且剪切过程中试样含石量越高，剪胀性越

强。总的来说，土石混合体的含石量越高，其物理力

学特性越好。此外，还有一些学者从块石特征、颗粒

级配等方面入手，研究这些因素对土石混合体物理力

学特性的影响。李诗琪等 [14] 采用自主研发的装置开

展物理试验，研究了间断级配对土石混合体物理力学

特性的影响。马丽娜等 [15] 通过压实试验和颗粒破碎

试验，研究了不同配比下土石混合体的物理力学性

质。刘宝臣等 [16] 开展大型直剪试验，研究了颗粒球度

对土石混合体剪切特性的影响，结果表明土石混合体

的抗剪强度随颗粒球度的增大而减小。Xu 等 [17]、徐

文杰等 [18 − 19] 一方面通过野外大型现场试验，研究了土

石混合体的力学特性与其粒度组成的关系；另一方

面，借助数字图像处理技术，实现了 S-RM 中块石真实

细观结构几何模型的重建，并在此基础上进行了一系

列的数值试验，研究了块石分布和块石特征对土石混

合体力学特性的影响。

综上，虽然目前国内外针对 S-RM 的含石量、块石特

征、颗粒级配等对其物理力学特性的研究已经开展了

相关研究工作，但目前对构成土石混合体的细粒土体

和加载速度等对其力学特性影响的研究相对较少，而

这对于实际工程中设计土石混合体的施工及稳定分析至

关重要。本文在现有研究的基础上，针对选取的典型土

石混合体试样，通过室内三轴试验的方式，开展细粒土

体性质及加载速率对土石混合体变形及力学特性的影

响研究，以揭示土石混合体的宏观力学特性演化规律

及其细观特性机理，为工程建设及灾害评估提供支撑。 

1    土石混合体三轴剪切试验
 

1.1    试样特性

土石混合体试样取自云南省某高速公路 3 个不同

弃渣场地，编号分别为 T1、T2、T3。其中，T1 试样呈

褐红色和棕色，细粒土体主要由黏土组成，块石岩性

主要为玄武岩；T2 试样呈棕色、棕黄色、灰白色，细粒

土体主要由砂土组成，块石岩性主要为花岗岩；T3 试

样呈杂色，细粒土体主要为黏性土，块石岩性主要为

砂岩和少量灰岩。3 种试样的干密度分别为 1.49，1.49，
2.23 g/cm3，级配曲线如图 1 所示。T3 试样的干密度大

于 T1、T2 试样，这是因为 T3 试样中含有较大的块

石、砾石等颗粒，自身具有较高的密度，可以有效地增

加试样干密度；此外，大颗粒块石的存在有助于减少

试样中的空隙，增加试样干密度。
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图 1    土石混合体级配曲线

Fig. 1    Particle size distribution curves of different S-RM
 

从图 1 可以看出，T1、T2 的含石量和干密度均相

似，但块石成分、细粒土体成分却存在明显差异。根据

徐文杰等 [2] 的研究成果，可计算出土石阈值为 5 mm、

T1 中黏土质量分数和 T2 中砂土质量分数分别为 88.5%
和 93.1%、含石量均小于 25%，此时试样的强度基本取

决于土体，可用于研究细粒土体性质对土石混合体力

学特性的影响。T3 内部含有较大粒径的块石，根据

《土工试验方法标准》（GB/T 50123—2019）[20] 要求，试

样的最大粒径不超过试样尺寸的 1/5（即 60 mm），因此

对于粒径大于 60 mm 的块石，采用等量替代法进行替

代（图 1）。 

1.2    三轴试验 

1.2.1    细粒土体特性对试样力学性质影响试验

采用应力应变控制式中型三轴试验仪（试样尺寸

φ101 mm×200 mm）研究构成土石混合体的细粒土体性

质对其力学特性的影响。

对每一种试样分别进行饱和固结排水（consolidated
drained，CD）和饱和固结不排水（consolidated undrained，
CU）2 种工况下的三轴剪切试验，并采用 100，200，400，
600 kPa 等 4 个围压状态，加载速率取 0.06 mm/min。

由于 T1、T2 试样的粒度级配相近且干密度相同，

为获取密实度相近的试样，两者采用相同的制样流

程。根据试样的高度分 5 层制样，各层土料质量相

等，每层击实至要求高度后，将表面刨毛，然后再加第

二层土料，如此继续直至击完最后一层，完成制样。

将制备完成的试样采用抽气法进行饱和。将饱和完

成后的试样安装在试验仪上，并采用双层橡胶膜进行

保护，以防止内层乳胶模被块石戳破而导致试验失

败。随后加装压力室，对试样进行等向围压作用下的

排水固结。固结完成后，进行排水剪切试验和不排水

剪切试验，试验过程中，通过排水管、量力环表、应变

计等设备对排水量、竖向压力、竖向应变等数据进行

读取记录，直至轴向应变达到约 15%，随后停止加载，

卸载轴向应力及围压，排掉围压室的水，结束试验。 

1.2.2    加载速率对土石混合体力学性质影响试验

针对 T3 试样，采用清华大学大型三轴土工试验

机（试样尺寸 φ300 mm×660 mm）开展不同加载速率对

试样力学性质的影响。采用固定围压（400 kPa）并设

置 4 种加载速率工况（轴向加载速率分别为 0.30，0.65，
1.30，2.50 mm/min）进行饱和固结排水试验。

由于大型三轴试样重量较大，需在试验机上制备

并饱和试样。T3 试样内存在粒径较大且尖锐的块石，

因此制样时在乳胶模内侧加装一层 1 mm 厚的 PVC
薄膜，防止块石刺破外层乳胶膜。根据试样的干密度

与级配，计算并称取所需质量的土石混合体，搅拌均匀，

分 5 层装料击实；制样完成后，采用水头法对试样进行

饱和；之后固结、排水等操作与中小型三轴试验相同。 

2    试验结果

图 2、图 3 为 T1 和 T2 试样在 CD、CU 条件下得

到的偏差应力、体应变及孔隙水压力随轴向应变的变

化曲线。从图 2 可以看出：2 种试样总体呈现相同的

应变硬化规律，偏差应力均随围压的增大而增大，随

着试样剪切的进行，偏差应力的增大速率逐渐变慢；

在低围压条件下（围压不超过 200 kPa），随着剪切进

行，偏应力最终趋于稳定，而在高围压条件下（围压大

于 200 kPa），应变硬化更为显著。

图 4 为 T3 试样在 400 kPa 围压、不同加载速率

（v）下的三轴试验结果。从图中可以看出，在相同轴

向应变下，随着加载速率的增加，试样的偏差应力和

体应变均不断减小。 

3    分析与讨论
 

3.1    细粒土特性对 S-RM 力学性质影响 

3.1.1    应力-应变曲线特征

在 CD 工况下，对比 2 种试样的应力发展过程，可

以看出：在相同围压和轴向应变下，由于构成 T1 试样

的细粒土黏土含量较高，含水率对黏土的力学性质影

响较砂土大、且黏土透水性较差，导致 T1 试样强度

比 T2 试样低 , 因而 T2 试样的偏差应力要高于 T1 试

样（图 2a），以 600 kPa 围压的工况为例，T2 试样的峰

值偏差应力比 T1 试样高 350 kPa。同时由于 T2 试样

含砂土、渗透性好，在相同试验工况下排水要比 T1 试样

好，所以与 T1 试样相比，T2 会出现较大的剪缩（图 3a）。
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而在 CU 工况下，由于不排水剪切过程中试样有被压

密趋势并产生超静孔隙水压力，孔隙水压力随轴向应

变的增大而增大，之后逐渐稳定。但含砂土的 T2 试

样透水性好，在加载过程中产生较高的孔隙水压力，

从而使得其偏差应力略小于含黏土的 T1 试样。

此外，T1、T2 试样的体应变并不是都随围压增大

而增大（图 3a），如 T2 试样在 100 kPa 围压下的体应变

大于在 200 kPa 下的体应变。为了进一步研究影响土

石混合体试样变形及强度的内外因素，分别对 CD 试

验后 T1、T2 试样的粒度特征进行筛分，得到不同围压

下试验前、后试样中各个粒组含量的变化（图 5）。从

图中可以看出，试验后粒径大于等于土石阈值（即 5 mm）

的块石含量明显减小，表明试样剪切过程粒径较大的

块石均发生了不同程度的破碎。且试验前后 T1、T2
粒径变化具有相同的规律：20 mm 左右的块石破碎

后，产生 10 mm 及以下的颗粒粒径，导致虽然 10 mm
颗粒粒径也略有降低，但降低幅度略小于 20 mm 的颗

粒；5 mm 的颗粒含量降低最为显著，最终导致 2 mm

的颗粒含量大幅度增多，以 600 kPa 围压的工况为例，

2 种试样 5 mm 颗粒的减少量均接近或超过了 6%；

T1 试样 2 mm 颗粒的增加量接近 8%、T2 试样超过了

10%。此外，随着围压的增加，5 mm 及以上的颗粒减

少越明显，颗粒破碎越显著（图 4）。因此，对于土石混

合体而言，由于含有粒径较大的块石颗粒，在外荷载

作用下，这些较大块石的空间分布及在剪切过程中的

颗粒旋转、位移和破碎等都将对其应力、体变演化发

展产生不同程度的影响。 

3.1.2    强度特性

p =
σ1+2σ3

3
q =
σ1−σ3

2
σ1 σ3

根据图 2，2 组土石混合体试样呈现明显的应变

硬化特征，没有明显的峰值应力，为此根据《土工试

验方法标准》（GB/T 50123—2019）[20] 选取轴向应变为

15% 时 的 偏 差 应 力 绘 制 p-q 曲 线 （图 6）， 其 中

， ， 和 分别是试样的轴压和围

压。通过拟合试验数据，得到土石混合体试样的黏聚

力（c）和内摩擦角（φ），如表 1 所示。
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Fig. 2    Deviation stress-strain curves of samples T1 and T2 under
different confining pressures
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构成 T1 试样的 “土体 ”为黏性土 ，其黏聚力为

3.5 kPa；而构成 T2 试样的“土体”为砂土，导致其黏聚

力为 0 kPa，但内摩擦角要大于 T1 试样。

对比 CD 和 CU 两种工况下的强度参数，可以看

出同一种土石混合体试样，由于试样在加载过程中会

产生超静孔隙水压力，使得试样在 CU 工况下比 CD
工况下的强度低。但是在 CD 条件下 T2 试样 34°的摩

擦角高于 T1 试样 31°的摩擦角，而 CU 条件下 T1 试

样 20°的摩擦角则要高出 T2 试样 15°的摩擦角。这是

由于构成 T2 土石混合体试样的细粒土以砂土为主，

砂土的变形受围压影响远比黏土敏感，在加载过程中

产生的孔隙水压力比 T1 更高（图 3b），导致其强度降

低更为明显。 

3.2    加载速率对 S-RM 力学性质影响

图 4 中偏差应力和体应变均随着加载速率的增加

不断减小，在 3.5 mm/min 的加载速率条件下，最大偏

差应力、最大体变仅相当于在 0.3 mm/min 加载速率条

件下的 60% 左右。这与目前关于岩体的峰值应力会

随着加载速率的增大而增大的规律 [21 − 23] 不一致，虽然

也有研究提到岩体的峰值应力会随加载速率的增大

而减小 [24 − 25]，但这主要是因为岩体内部的损伤积累，

并不完全适用于土石混合体。对 T3 试样而言，计算

其土石阈值为 15 mm，进而可得到其含石量在 40% 左

右，该含石量下其强度往往取决于其中的土体、块石

及两者的相互作用。加载速率较快时，试样内部的颗
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粒没有充足的时间发生滑移和旋转，颗粒之间未能充

分接触，摩擦不能完全建立，导致试样内部颗粒间的

接触、咬合等作用表现出来的抗剪强度得不到充分发

挥，宏观表现为试样偏差应力的降低。此外，加载速

率高时，由于颗粒间的作用不能充分发挥，颗粒破碎

也将降低，因此而导致的颗粒间重排列而引起的体变

也不能充分响应，宏观表现为试样体缩的减小（图 4b）。 

4    结论

（1）构成土石混合体的细粒土体成分对其物理力

学性质有显著的影响。试验中的排水条件会影响土

石混合体的力学行为及孔隙水压力消散过程，从而影

响其抗剪强度和体变；在相近的含石量条件下，固结

排水条件下含砂土的土石混合体强度较含黏土的土

石混合体强度要高，而固结不排水条件下则反之。

（2）土石混合体在外部荷载作用下将发生不同程

度的颗粒破碎特征，在高围压（600 kPa）下，T1、T2 试

样 5 mm 颗粒的减小量均达到了 6% 左右。颗粒破碎

将导致试样内部粒度级配的重分布，从而影响试样的

体变、强度等特征的演化。

（3）加载速率会对土石混合体的强度有一定的影

响。在 3.5 mm/min 的加载速率条件下，T3 试样的峰

值偏差应力和峰值体变仅为 0.3 mm/min 加载速率条

件下的 60% 左右。这是因为加载速率较高的情况下

内部块石颗粒难以充分调整（位移、旋转及破碎）以抵

抗外部荷载。
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表 1    不同试验条件下试样的强度参数

Table 1    Strength parameters of samples under different test
conditions

 

S-RM
试样

试验工况

CD CU

c /kPa φ/（°） c /kPa φ/（°）

T1 3.50 31 2.11 20
T2 0 34 0 15
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