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Research progress in integrated groundwater-surface water models

PENG Shuyan'?, LU Zheng"*, WU Tingting?, YANG Xiaofan'?
(1. State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science,
Beijing Normal University, Beijing 100875, China; 2. School of Natural Resources, Faculty of Geographical
Science, Beijing Normal University, Beijing 100875, China)

Abstract: Groundwater-surface water interaction involves material transport and energy transfer processes, which
directly impacts the hydro-ecological environment of watersheds. It is a crucial component of the hydrological
cycle which has become a hot issue in hydrogeology in recent years. The integrated groundwater-surface water
models serve as a powerful tool for studying groundwater-surface water interaction. This paper reviewed recent
studies on integrated groundwater-surface water models, providing an overview in five aspects: classification of
integrated groundwater-surface water models, sources of model bias, model application, challenges, and trend of
model development. Integrated models are categorized into fully coupled and loosely coupled models based on

coupling schemes. There are five categories of sources of integrated model bias, including topographic processing,

ks HER: 2024-01-01; 12iTHEA: 2024-03-17 K FME: www.swdzgedz.com

EEWE: HEAAPEEEIA (42077172)

F—1EE: B (1996—), 2, M5, FE NS N K BAERHLIIFSE . E-mail: sypeng@mail.bnu.edu.cn

BINAEE: BIRIL(1981—), &, 181, #08%2, EE NI FOKBIS | BREE R ) 4% 2 ROBE R 5 B0 A 400 55 D v P B 5%
E-mail: xfyang@bnu.edu.cn


https://doi.org/10.16030/j.cnki.issn.1000-3665.202401001
https://doi.org/10.16030/j.cnki.issn.1000-3665.202401001
https://doi.org/10.16030/j.cnki.issn.1000-3665.202401001
https://www.swdzgcdz.com
mailto:sypeng@mail.bnu.edu.cn
mailto:xfyang@bnu.edu.cn

2024 4F

AT, S 1R K- R OK R U RUAT 5T - 61 -

meteorological forcing bias, model parameters, anthropogenic process, and epistemic limitations. The integrated

models are widely used to study the changes in groundwater-surface water patterns under the influences of climate

change and human activities, and to research water resources management and optimization. In addition, the

integrated models are facing multiple challenges, such as the increasing demand for basic data, higher

requirements for hardware platforms, the difficulty in accurately determining the modeling region, and the evident

trend of interdisciplinary integration. Finally, the integrated model development is expected to focus on enriching

the approaches to obtaining model parameters, improving the simulation efficiency, and strengthening the

integration of model coupling with different disciplines.

Keywords: groundwater; surface water; integrated groundwater-surface water model; source of model bias;

groundwater-surface water interaction; water resources management and optimization
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Fig.1 A schematic of groundwater-surface water interaction
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