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Remote sensing estimation on regional continuous daily
evapotranspiration based on Richards equation
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(1. College of Geological Engineering and Geomatics, Chang’an University, Xi’an, Shaanxi 710054, China;
2. College of Water Conservancy and Environment, Chang an University, Xi’an, Shaanxi 710054, China)

Abstract: Evapotranspiration (ET) is an important part of water cycle in nature, and the estimation of
evapotranspiration on spatio-temporal scale has always been a hot issue. Remote sensing can estimate
evapotranspiration on regional scale, but it is difficult to obtain evapotranspiration in continuous time series due to
the limitation of satellite transit time. Soil moisture is an important controlling factor of evapotranspiration.

Improving the remote sensing evapotranspiration model by combining soil moisture data is of great significance in
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improving the accuracy of remote sensing evapotranspiration estimation. However, most remote sensing methods
give limited consideration to the characterization of soil moisture stress. This study used the evapotranspiration
calculated by the vorticity correlation method as the actual evapotranspiration. combining with the single crop
coefficient method recommended by FAO, the soil water content information was introduced into the Penman-
Monteith formula to calculate the actual evapotranspiration. Based on Richards equation, the one-dimensional
vertical soil water movement process under evaporation conditions was simulated to estimate the continuous daily
evapotranspiration under soil water stress. Combining with remote sensing data, the regional scale
evapotranspiration was estimated. The results show that the actual daily evapotranspiration calculated by the
vorticity correlation method has a strong correlation with the potential daily evapotranspiration calculated by P-M
formula, with the correlation coefficient of 0.918. With the introduction of soil water content information, the P-M
formula improves the estimation accuracy of daily evapotranspiration significantly, and the RMSE reaches
0.133 mm/d. The estimated daily evapotranspiration under soil water stress based on Richards equation is close to
the measured value, with the RMSE of 0.288 mm/d. The high value of daily evapotranspiration affected by the
topography of the study area is concentrated in the water area and cultivated land area in the middle of the study
area. The average daily evapotranspiration under different soil use types is water area > cultivated land >
woodland > grassland > unused land, and the results on the regional scale show similar change with that measured

in the the station in time series. This study provides basic information for understanding the influence mechanism

of soil moisture on evapotranspiration and estimating regional evapotranspiration.

Keywords: remote sensing inversion of evapotranspiration;
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models constructed by different soil water stress functions
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Fig. 2 Comparison between simulated and measured values of soil water content from April 28 to May 3
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Table 3 Error analysis of simulated and measured
evapotranspiration
H i FEE /mm BEALME/mm YRR FE /mm
4J128H 3.040 3.191 0.151
4H29H 3.336 3.037 -0.299
4J130H 3.454 3.684 0.231
SH1H 3.462 3.917 0.455
5H2H 2.260 2.185 -0.074
SH3H 1.775 1.428 -0.346
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Fig. 3 Fitting relationship between measured soil water content
and soil water data set
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Fig.4 Estimation of daily evapotranspiration in the study area from April 28 to May 3
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Table 4 Accuracy evaluation of remote sensing inversion results
of daily evapotranspiration at three stations

TMPZE R PR B REE

i
B o /(mmd™?)  #E/(mmed")  2Z/(mm-d”’)  /(mm-d?)
Kl 2.787 2.907 0.283 0.287
ALFET Uk 1.732 1.599 0.334 0.308
SR AR b 4.881 5.070 0.307 0.343
L Tr et
g o Ml
=) 6F ﬁiﬂj‘ L 4
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SE sl AA T A4
s =0.940 v
=
e

T MODIS [ 73
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Fig. 5 Comparison of daily evapotranspiration retrieved from

23]
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[
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remote sensing and daily surface evapotranspiration data based
on MODIS

T YT 22 AN KT, RO R R AR, A SOR
XFHHEAT 30T ) o ASTR] b A S LAY - 1 H 28 i
RN 2 R s>t > Fe >R A 3 (35 5) .
®5 AELTHFAERTERRERAZHEESET MODIS B
B B R AR R BRI ETEM
Table 5 Accuracy evaluation of daily evapotranspiration

retrieved by remote sensing and daily surface evapotranspiration
data based on MODIS under different land use types

T A S TMODISH -3 38 B B V375 SF34axti ¥ RIR
il Z&HE/(mm-d™")  #uE/(mm-d") 22/(mm-d") Z/(mm-d")

Bt 3.152 3.233 0.157 0.173
Mt 2281 2.426 0.127 0.143
i 1.971 1.980 0.103 0.153
7Kk 5.771 5.571 0.114 0.165
A L 1.571 1.620 0.133 0.225
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