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Comparative study on two drying-rewetting algorithms of
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Abstract: When simulating drying-rewetting process of grid cells in numerical groundwater modeling using the
block-centered finite-difference approach, the models is highly probable to run into non-convergence, which could

greatly affect the applicability of groundwater models. This study used ideal case and practical simulation in
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Denmark to comprehensively compare the simulation capabilities and characteristics of two algorithms, namely
the empirical trial (ET) method proposed by MODFLOW and the always active cell (AAC) method proposed by
COMUS, in the drying-rewetting simulation. The results show that: (1) For the ET method, the selection of
parameter combination has a significant influence on the model convergence and the simulation results. It is
compulsory to continuously optimize the parameter to avoid model failures such as non-convergence and large
simulation errors when using the ET method, which greatly increases the difficulty of groundwater model
application and time cost. (2) The simulation results from the AAC method are more reliable than those from the
ET method. Theoretically, the effect of the AAC method is equivalent to the optimal parameter set in the ET
method. Therefore, parameter optimization is no longer needed in the AAC method, which can effectively reduce
the difficulty of using groundwater models and meanwhile reduce the uncertainty of simulation results. (3) The
numerical accuracy of the intercell horizontal hydraulic conductance in the AAC method is consistent with that of
the classical harmonic average method, demonstrating that the AAC method can also be used in the simulation
without the drying-rewetting process. In summary, the AAC method is more suitable for simulating the drying-
rewetting process of groundwater model cells and is expected to be more widely used in groundwater numerical
simulation.
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Fig.1 Schematic diagram of the ET method
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using the AAC method
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Table 1 Comparison of water balance in the ideal case /m’
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Table 2 Simulation scheme settings and convergence of the Lake
Hampen basin model

ETE ST U Rk Rk BTk Uk AR

1 2 3 4 5 6 7 Houik

WETDRY/m 0.3 0.3 0.3 0.3 1 2 —-0.02
NWETIT 2 2 2 4 2 2 2
WETFCT 0.1 1 1 1 1 1 1
IHDWET 1 1 2 2 2 2 2
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Fig.7 Model configuration of the Lake Hampen basin
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Fig. 10 Comparison of simulated daily average water table and daily lake water level in the ET schemes and the AAC scheme
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Table 3 Comparison of simulated water balance by the ET schemes and the AAC scheme /10* m’
7K Sk A T F4 RS 56 k7 AT

T #hA TR 7 874.093 7874.078 7 874.101 7 874.084 7 874.061
NN S'SUE BTN 1063.619 1 064.806 1061.605 1 069.624 1070.379
TITEB A2 B 16.038 16.315 17.247 16.134 16.473
RS 1528.940 1526.667 1509.230 1532.026 1526.061
TE 7K KA P 8 822.492 8 823.179 8 823.343 8 826.603 8 811.780
B2 N R =S 1 i 16.377 16.459 18.065 15.915 16.212
R K T A HE: i 1601.177 1604219 1638.722 1595.755 1596.793
WKZER i 0.000 0.000 0.000 0.000 0.000
HA R 42.641 38.008 —17.949 53.597 62.189
TR A 1R 22 0.002 0.001 0.003 -0.002 0.000
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