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摘要：寒区岩体长期经受荷载与冻融的共同作用，若不考虑冻融过程对其长期力学行为的影响，将会给寒区工程建设和安

全运营带来重大的安全隐患。为此，以寒区某边坡工程砂岩为研究对象，通过开展不同冻结温度下的冻结/解冻过程单轴分

级加载蠕变试验，使岩石在同一应力状态下处于冻结和解冻过程，真实再现寒区工程岩体长期力学响应特征。以此研究冻

结/解冻过程对岩体长期力学特性的影响，并对其蠕应变、稳态蠕变速率及长期强度等宏观力学指标进行量化分析。结果

表明：（1）砂岩冻结过程先后经历冷缩阶段、冻胀阶段和稳态蠕变阶段，解冻过程只经历融缩阶段和稳态蠕变阶段；冷缩阶

段和融缩阶段砂岩发生收缩变形，冻胀阶段则发生膨胀变形；（2）冻结 /解冻温度为−5 °C/25 °C、−10 °C/25 °C、−15 °C/25 °C

时，砂岩蠕应变较常温状态下蠕应变增幅范围分别为 102%～193%、81%～126%、105%～194%，解冻后稳态蠕变速率较冻

结前最大增长 3.65 倍、4.31 倍、5.56 倍，冻结 /解冻过程蠕变砂岩的长期强度是常温状态下长期强度的 96.33%、88.52%、

75.44%；（3）应力对冷缩、冻胀变形的产生起抑制作用而对融缩变形的产生起促进作用；冻结温度越低，冻胀变形和解冻后

融缩变形越明显。文章提出的将蠕变与冻融过程相结合的试验方法能较为真实地反映工程实际，该方法为寒区岩体工程

长期稳定性评价提供新途径。

关键词：蠕变特性；冻结/解冻过程；冷缩应变；冻胀应变；融缩应变
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Abstract：The rock mass in cold regions is  always subjected to the load and freeze-thaw. If  the impact  of  long-
term freeze-thaw mechanical behavior on sandstone mass is neglected, it would lead to significant hazards to the
construction and safe operation of engineering in cold regions. This study focused on the sandstone from a slope
engineering in the cold region. The realistic long-term mechanical response characteristics of engineering rocks in
cold  regions  was  presented  by  uniaxial  graded  loading  creep  tests  for  the  freezing/thawing  process  at  different
freezing temperatures and the same stress state. Then the effect of the freezing/thawing process on the long-term 
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mechanical properties of the rock mass was investigated, and the macroscopic mechanical indexes, such as creep
strain,  steady-state  creep  rate,  and  long-term  strength,  were  analyzed  quantitatively.  The  results  indicate  that
sandstone undergoes the stages of cold shrinkage, frost heave, and steady-state creep during the freezing process,
and  the  stages  of  thaw  consolidation  and  steady-state  creep  during  the  thawing  process.  Sandstone  shrinkage
deformation occurs during the cold shrinkage and thawing stages, while expansion deformation occurs during the
frost heave stage. At freezing/thawing temperatures of −5 °C/25 °C, −10 °C/25 °C, and −15 °C/25 °C, compared to
the  creep  strains  at  room  temperature,  the  creep  strains  of  the  sandstone  are  amplified  by  102%−193%,
81%−126%, and 105%−194%, respectively. The steady-state creep rate after thawing increases by 3.65, 4.31, and
5.56 times compared to the steady-state creep rate at room temperature. The long-term strength of the sandstones
in  the  frozen/thawed  state  are  96.33%,  88.52%,  and  75.44% of  the  long-term  strength  at  room  temperature,
respectively.  Stress  inhibits  the  generation  of  cold  shrinkage  and  freezing  deformations  and  promotes  the
generation of thawing deformations. The freezing temperature affects frost heave deformation and thaw shrinkage
deformation  after  thawing.  As  the  freezing  temperature  decreases,  the  deformation  increases.  A  test  method
combining  creep  with  freeze-thaw  processes  has  been  proposed  in  the  study,  which  can  characterize  the  real
engineering  condition.  This  study  provides  a  new  method  to  evaluate  the  long-term  stability  of  rock  mass
engineering in cold regions.
Keywords：creep characteristics；freezing/thawing process；cold shrinkage strain；frost heave strain；melting
shrinkage strain

 

寒区岩质边坡等岩体工程长期暴露于自然环境

下受冻融循环、雨水侵蚀、开挖开采等作用的共同影

响[1]，极易发生各类地质灾害和工程事故[2 − 3]。例如，2013
年 3 月 29 日，我国西藏甲玛矿区内泽日山发生山体滑

坡，造成 200 多万方边坡塌方、83 名现场作业人员被

埋的特大工程事故。究其事故原因，是长期冻融作用

导致岩体强度劣化 [4]，加之事发当月多次降雪，融雪渗

透加剧了岩体稳定性降低 [5]，并在开挖开采作用下引

发岩体失稳所致。事实上，寒区岩体工程不仅遭受冻

融循环作用导致力学性质劣化 [6]，而且还同时经受荷

载长期作用引起的蠕变变形和强度降低等考验 [7]。因

此探究冻结/解冻作用下岩石的时效力学特性对于寒

区岩体工程的建设及安全运营具有重要价值[8]。

很多学者针对低温冻结状态下岩石长期力学特

性开展了大量研究，如，宋勇军等 [9] 研究了低温环境

下红砂岩蠕变特性以及冻结温度对岩石蠕变特性的

影响；单仁亮等 [10] 研究了低温状态下节理倾角对红砂

岩蠕变特性的影响，并建立了描述冻结层状红砂岩蠕

变特性的理论模型；Yang 等 [11] 研究了不同含水率红

砂岩低温环境下蠕变力学性能；Bai 等 [12] 对低温状态

下含冰单裂隙红砂岩进行三轴蠕变试验，建立了能够

描述含冰单裂隙冻结红砂岩蠕变特性的损伤模型；刘

晓燕等 [13] 研究了冻结状态下褐色泥岩加速蠕变特性，

并优化了更适用于描述冻结褐色泥岩非线性加速蠕

变特性的西元模型。

上述有关冻结岩石蠕变特性研究表明，低温状态

下岩石内部孔隙水冻结成冰导致其强度、弹性模量增

大，抵抗变形能力增强 [9]。而事实上，寒区岩体工程不

可能长期处于冻结状态，恶劣的自然环境带来的巨大温

差，使岩体工程无法避免的要经历冻融循环作用[14]，相

对低温冻结作用而言，开展冻融循环作用下岩体的长

期力学特性研究对岩体工程建设及运营更有意义。

为揭示冻融后岩体的长期力学特性，众多学者根

据岩体受荷状态，采用单轴 [15 − 16]、三轴 [17 − 18]、卸荷 [19]、

剪切 [20]、加卸载 [21] 等试验方法对冻融后岩石进行蠕变

特性研究，结果表明冻融作用对岩石长期力学性能影

响显著：（1）冻结温度越低，解冻后岩石蠕变量和蠕变

速率增大；（2）冻融次数增加，岩石破坏强度、长期强

度等有明显降低趋势。

然而，现有的研究都是将冻结/解冻作用与加载过

程割裂开的，先将岩石进行冻融处理而后开展力学试

验。但实际寒区工程岩体是在经受荷载长期作用的

同时受到冻结 /解冻循环作用，而冻结 /解冻过程对岩

石蠕变特性带来的影响是不可忽视的 [22 − 23]。然而有

关该方面的研究尚显不足，虽然有学者对岩石 [24 − 25] 和

受荷膨胀土 [26] 经冻融循环作用时的变形规律进行研

究，但这并不能反映出岩石冻结/解冻过程中的蠕变特

性。基于此，本文开展砂岩冻结 /解冻过程蠕变试验，
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研究岩石在冻结/解冻过程中的蠕变特性，以期为寒区

岩体工程的长期稳定性评价及灾害预测预报提供参考。 

1    试验方法
 

1.1    岩样制备

试验所用砂岩取自我国寒区某岩石边坡工程，X
射线衍射测试结果显示其主要成分为石英（50.0%）、

斜长石（15.7%）、钾长石（11.8%）、蒙脱石（9.7%）、方

解石（7.0%）和其他矿物（5.8%）。按国际岩石力学学

会试验规程建议方法 [27]，对工程现场取回的完整岩块

进行钻孔取芯，加工成直径 50 mm、高 100 mm 的标准

圆柱体岩样，并对岩样两端进行打磨，保证两端面平

行度<0.05 mm，如图 1 所示。
  

图 1    砂岩岩样

Fig. 1    Rock samples of sandstone
 

参照《工程岩体试验方法标准》 （GB/T 50266—

2013）[28]，首先剔除视觉上明显差异的岩样，然后将岩

样放入烘箱，在恒温 105 °C下烘 24 h，待其冷却后测得

干密度和纵波波速。将选取的岩样置于真空饱和装

置中，以 0.1 MPa 的抽气压力抽气 4 h，大气压力下静

置 4 h。得到岩样的饱和密度、饱和含水率和孔隙度

等物理参数，岩样基本物理参数均值见表 1。
  

表 1    岩样物理参数均值

Table 1    Average values of physical parameters of sandstone
 

参数
纵波波速/
（m·s−1）

干密度/
（g·cm−3）

饱和密度/
（g·cm−3）

饱和含
水率/%

孔隙
度/%

均值 2 272 2.12 2.31 9.01 19.13
  

1.2    试验装置

力学试验装置采用 TAW-1000 型微机控制岩石蠕

变试验机，该试验机提供最大 1 000 kN 轴向压力，可

实时记录应力、应变等试验数据；轴向应变选用 LVDT
变形传感器进行监测，其测量范围为±2.5 mm，精度

0.001 mm；采用 TMS-8018 型循环冷浴系统作为压力室

温控装置，该系统以酒精作为冷源媒介，酒精温度可

达−40 °C，波动范围±0.2 °C。上述试验装置如图 2 所示。

 
 

a b c

图 2    试验装置

Fig. 2    Test equipment
  

1.3    试验方案

将选取的岩样分为 A、B 两组并编号，A 组饱和岩

样进行单轴压缩试验，B 组饱和岩样进行常温状态

下和冻结 /解冻过程分级加载蠕变试验，岩样分组及

用途详见表 2。砂岩所在地冬季平均气温可达−14.9～
−9.4 °C[29]，因此冻结 /解冻过程蠕变试验时冻结温度

（Ta）分别取−5，−10，−15 °C，解冻温度（Tn）统一设置为

25 °C。
 
 

表 2    岩样分组

Table 2    Rock samples grouping
 

组别
岩样
编号

岩样用途简介
峰值强度

/MPa
平均峰值
强度/MPa

冻结（解冻）
温度/°C

A

A-1
单轴压缩

10.05

9.86

—

A-2 9.82 —

A-3 9.72 —

B

B-0 常温蠕变 —

—

—

B-1
冻结/解冻
过程蠕变

— −5（25）

B-2 — −10（25）

B-3 — −15（25）

　　注：—表示无数据；下表相同。
 

首先开展单轴压缩试验，获得岩样的峰值强度；

而后开展单轴分级加载蠕变试验，最后开展冻结/解冻

过程单轴分级加载蠕变试验。蠕变试验时，第 1 级应

力水平为平均峰值强度的 30%，之后每级应力水平增

加 15%。

（1）单轴压缩试验

保持试验室温度为恒温 25 °C，对饱和岩样开展单

轴压缩试验以此获得岩样应力-应变曲线（图 3），通过

该批岩样平均峰值强度（σc）计算蠕变试验各应力水平

下的轴向应力值。

（2）单轴分级加载蠕变试验

将涂有密封漆的饱和岩样放置压力室，保持压力

室温度恒定 25 °C。以 0.01 MPa/s 的速率施加第 1 级

2024 年 宋勇军，等：砂岩冻结/解冻过程蠕变特性研究  ·  95  ·



应力水平进行单轴蠕变试验，当岩样轴向变形稳定或

应变变化值小于 0.01 h−1 后加载至下一级应力水平，

以此类推逐级进行，直至岩样破坏。

（3）冻结/解冻过程单轴分级加载蠕变试验

在单轴分级加载蠕变试验的基础上开展冻结 /解
冻过程蠕变试验。先将拟施加的第 1 级应力水平设

定为峰值强度的 30%，待岩样变形趋于稳定或应变变

化值低于 0.01 h−1 时，开启低温冷浴循环系统，进行冻

结过程蠕变试验。温度降到设定值后，继续观察岩样

变形趋于稳定后，关闭冷浴系统（岩样在常温条件下

自然解冻），开始解冻过程的蠕变试验，待完全解冻后

的岩样变形趋于稳定时，加载至下一级应力水平，变

形稳定后再次开启冷浴系统，依此类推逐级进行，直至

岩样破坏。冻结/解冻过程蠕变试验流程如图 4 所示。 

2    试验结果

图 5（a）为常温状态蠕变与不同冻结温度下的冻

结/解冻过程蠕变曲线。通过对比发现，B 组岩样在破

坏前各应力水平下，其各自蠕变曲线具有相似的应变

变化规律。为便于详细描述砂岩冻结/解冻过程蠕变

变形特征，选取冻结温度为−10 °C 的第 1 级冻结/解冻

过程蠕变曲线绘制典型蠕变曲线图，见图 5（b）。
由图 5（b）可知，相较于常温状态，冻结/解冻过程

对岩石蠕变变形产生显著的影响。文中蠕变曲线以

应变压缩方向为正，定义冻结/解冻过程中轴向应变曲

线向应变轴正方向发展的趋势为“缩”，向应变轴负方

向发展的趋势为“胀”。冻结过程蠕变：初始降温，轴

向应变曲线沿应变轴正方向增长但增幅较小，压力室

温度达到 0 °C 附近时应变急速增至最高点，这表明岩

样遇冷产生收缩变形出现冷缩现象，称该阶段为冷缩

阶段（A）；温度继续降低，轴向应变曲线向应变轴负方

向下降，继续降温至预定冻结温度后，轴向应变下降

速率变缓，直至降至最低点，这表明岩样产生膨胀变

形出现冻胀现象，称此阶段为冻胀阶段（B）；保持冻结

温度恒定，应变曲线沿应变轴正方向缓慢增长，冻结

状态岩样出现稳态蠕变现象，称之为冻结稳态蠕变阶

段（C）。解冻过程蠕变：升温过程，应变曲线随着温度

上升向应变轴正方向快速增长，压力室温度升至 25 °C
后，应变曲线继续增长，但增长趋势在放缓，这表明解

冻过程岩石产生了收缩变形出现融缩现象，称此阶段

为融缩阶段（D）；压力室保持温度恒定 25 °C，应变曲

线沿应变轴正方向缓慢增长，解冻后的岩样出现稳态

蠕变现象，称之为解冻后稳态蠕变阶段（E）。 

3    分析与讨论
 

3.1    冻结过程蠕变特性

为更加直观地分析冻结过程岩样冷缩阶段（A）、

冻胀阶段（B）与冻结稳态蠕变阶段（C）的变形特性，将
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Fig. 3    Stress-strain curves
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Fig. 4    Flow chart of creep test during the freezing/thawing
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典型冻结 /解冻过程蠕变曲线（冻结温度为−10 °C）局

部放大，如图 6 所示。冻结过程，即压力室温度从 25 °C
降至−10 °C 这段区间，岩样先产生冷缩现象，这是由

于岩石骨架遇冷收缩产生冷缩应变（εcs）；而后发生冻

胀现象，这是由于内部孔隙水产生水冰相变，导致岩

石骨架在冰的挤压下产生冻胀应变（εcd）
[25]。
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图 6    冻结过程蠕变曲线局部图

Fig. 6    Part of creep curve during freezing
ε′cs ε′cd注： 为冷缩阶段应变； 为冻胀阶段应变。

  

3.1.1    冷缩阶段

εcs

εcd

由 图 6 可 知 ， 压 力 室 环 境 温 度 从 25  °C 降 到

−0.1 °C 这段温度区间（即图 6 中的Ⅰ区间），岩样应变

增长较快，这是因为该区间岩样应变形态由冷缩应变

主导；压力室环境温度从−0.1 °C 到−1.3 °C 这段温

度区间（即图 6 中的Ⅱ区间），岩样应变增长趋势放

缓，−1.3 °C 时应变达到峰值，这是因为当温度降至孔

隙水冰点后岩样产生冻胀应变 ，随着温度持续降

εcs εcd

低，冻胀应变增长速率与冷缩应变增长速率趋于相

等，这段降温区间岩样应变形态由 与 共同主导。

ε′cs

ε′cs

ε′cs

将冷缩阶段应变称为 ，如图 6 所示。图 7 为冷

缩阶段应变变化趋势图，同一应力等级下，不同岩样

不尽相同，除岩样之间孔隙率 [30]、矿物成分 [31] 的差

异外，还与冻胀应变增长速率有关。同一岩样， 随

应力水平的增加整体呈下降趋势，这可能是由于在应

力的作用下岩石微孔闭合和软弱相被压缩导致岩石

可变形结构强度提高 [32]，从而导致砂岩冷缩变形能力

降低。而 B-1 试样冷缩阶段应变随应力等级增加先增

大后减小这一“特殊现象”可能与岩石内部构造发生

改变有关[25]，岩石内部原有的“平衡”被打破，矿物颗粒

间的秩序重新排列。当矿物颗粒再次遇冷，岩样冷缩

应变较之前增大。
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3.1.2    冻胀阶段

压力室环境温度从−1.3 °C 降至−10 °C 过程，应变
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曲线急速下降；压力室温度保持−10 °C 稳定后，应变

曲线下降速率变缓，最终降至最低点。冻胀阶段液态

孔隙水逐渐冻结为固态冰，水冰相变体积发生膨胀，

冰体与岩石骨架相互挤压产生冻胀力，致使岩石骨架

产生体积膨胀[33]。

ε′cd

ε′cd

ε′cd

ε′cd

称冻胀阶段应变为 ，如图 6 局部图标注所示。

表 3 为不同冻结温度下各加载等级下的 ，由表可

知：同一应力水平下， 随冻结温度的降低而增大，如

第 1 级轴向应力下，相对−5 °C，冻结温度−10，−15 °C
下的应变分别增长 87.80%、143.90%，这是因为冻结温

度越低，内部孔隙水冻结程度越高，导致冻胀现象越

明显；同一冻结温度下， 随应力水平增加而减小，如

−5 °C 时，相对第 1 级轴向应力水平，第 2 级、第 3 级

应力水平下应变分别减小 17.07%、39.02%，这是因为

加载应力水平限制了冻胀变形。
 
 

表 3    冻胀阶段应变

Table 3    Strain during the frost heave stage
 

岩样编号 冻结温度/°C
加载等级

1 2 3

B-1 −5 0.041×10−2 0.034×10−2 0.025×10−2

B-2 −10 0.077×10−2 0.057×10−2 0.039×10−2

B-3 −15 0.100×10−2 0.066×10−2 —
  

3.1.3    冻结稳态蠕变阶段

冻结稳态蠕变阶段（C），岩样呈现稳态蠕变，其蠕

变变形能力较冻结前降低。因篇幅限制，仅以冻结温

度为−10 °C、第 1 级加载应力水平下的稳态蠕变速率

作为例证。常温状态下稳态蠕变速率为 3.76×10−6 h−1，

冻结状态下稳态蠕变速率为 2.58×10−6 h−1，这表明低温

冻结作用导致岩石抵御变形能力增强。 

3.2    解冻过程蠕变特性 

3.2.1    融缩阶段

εt

解冻过程蠕变局部图如图 8（a）所示，记融缩阶段

（D）产生的应变为融缩应变 。各应力水平下，岩样

融缩应变见图 8（b），冻结温度相同，解冻过程融缩应

变随着应力水平增加呈增长趋势，以 B-1 岩样（冻结温

度−5 °C）为例，第 1 级蠕变时融缩应变为 0.050%，相对

第 1 级应力水平，第 2、3 级应力水平下产生的融缩应

变增幅分别为 14.00%、42.00%；应力水平相同，解冻过

程融缩应变随冻结温度降低呈增长趋势，如第 2 级应

力水平下，冻结温度为−5 °C 时，解冻过程融缩应变为

0.057%；相对−5 °C，冻结温度为−10，−15 °C 时，解冻过

程融缩应变增幅为 50.88%、136.84%。

 

（a）解冻过程蠕变曲线局部图

（b）融缩应变
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Fig. 8    Creep during thawing and melting shrinkage strain
εtc εc注：（a）图中 为融缩蠕应变； 为常温状态下的蠕应变。

 

造成上述现象的原因有两方面：1）冻结过程中冻

胀应变随着孔隙冰融解而消失；2）冻结/解冻作用导致

岩石的力学性能发生变化，其抵御变形能力降低。 

3.2.2    解冻后稳态蠕变阶段

各加载等级下解冻后稳态蠕变速率与冻结温度

的关系如图 9 所示，冻结温度对解冻后稳态蠕变速率

影响较为明显，同一应力水平下，解冻后稳态蠕变速

率随冻结温度降低呈增长趋势。如冻结温度为−5 °C，

第 1 级蠕变解冻后稳态蠕变速率为 4.32×10−6 h−1。相

对−5 °C，冻结温度为−10 °C 和−15 °C 时解冻后稳态蠕

变速率增幅分别为 350.93%、481.94%。 

3.3    冻结/解冻作用对蠕变特性的影响 

3.3.1    冻结/解冻作用对蠕应变的影响

εtc

冻结/解冻作用导致岩石力学性能劣化，相对常温

状态，其蠕变量会不同程度的增加，增加的这部分蠕

变称为融缩蠕应变 。融缩蠕应变在蠕变曲线上无

明显特征，但可通过如下方法对融缩蠕应变进行量

化。常温状态下，稳态蠕变阶段岩样蠕变速率在恒定

值附近上下微动 [34 − 35]，若无冻结/解冻作用，岩样蠕变
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εtc

εtc εc

曲线以常温状态下稳态蠕变速率进行，如图 8（a）中虚

线所示。冻结/解冻过程蠕变曲线与常温蠕变曲线的

差值即为 ，见图 8（a）标注。表 4 为各加载等级下的

融缩蠕应变 和常温状态下的蠕应变 。
  

表 4    蠕应变

Table 4    Creep strain
 

岩样编号 冻结（解冻）温度/°C 加载等级 εtc/% εc/%

B-1 −5（25）
1 0.029 0.015
2 0.035 0.028

3 0.045 0.044

B-2 −10（25）
1 0.029 0.023
2 0.039 0.041

3 0.058 0.072

B-3 −15（25）
1 0.033 0.017
2 0.064 0.061

3 — —
 

εtc εc与 的比值（%）表示蠕变过程受冻结/解冻作用

后蠕应变的增长率。冻结/解冻温度为−5 °C/25 °C 时，

第 1、2、3 级蠕应变相对常温状态下分别增长 193%、

125%、102%；冻结 /解冻温度为−10 °C/25 °C 时，蠕应

变分别增长 126%、95%、81%；冻结/解冻温度为−15 °C/
25 °C 时，蠕应变分别增长 194%、105%。综上所述，岩

样蠕变过程受冻结/解冻作用后蠕应变均不同程度大

幅增长，冻结/解冻作用促进了岩石的蠕变变形。 

3.3.2    冻结/解冻作用对稳态蠕变速率的影响

ε′c ε′c(F−T)

B-2 岩样（冻结温度为−10 °C）第 1 级应力水平下

常温状态、解冻过程蠕变速率如图 10 所示，由图可知

解冻后稳态蠕变速率相对冻结前明显增大。称冻结

前稳态蠕变速率为 ，解冻后稳态蠕变速率为 ，

冻结前与解冻后稳态蠕变速率见表 5。
岩样解冻后稳态蠕变速率较冻结前稳态蠕变速

率不同程度增长，冻结温度为−5 °C，解冻后稳态蠕变

速率较冻结前的稳态蠕变速率最大增加 3.65 倍，最小

增加 0.45 倍；冻结温度为−10 °C，解冻后稳态蠕变速率

较冻结前的稳态蠕变速率最大增加 4.31 倍，最小增加

0.98 倍；冻结温度为−15 °C，解冻后稳态蠕变速率较冻

结前的稳态蠕变速率最大增加 5.56 倍，最小增加 1.47
倍。由此可知，蠕变过程受冻结/解冻作用后，岩石稳

态蠕变速率不同程度的增加，冻结/解冻作用使岩石的

流变特性更加显著。

通过上述分析可知，砂岩蠕变过程经冻融作用后

蠕应变和稳态蠕变速率大幅增加，产生这种现象的原

因是岩石受冻融循环作用时产生损伤 [36]，导致其抵抗

变形的能力降低。图 11 为蠕应变比（冻融作用下蠕应

变/常温状态下蠕应变）和稳态蠕变速率比（冻结前稳

态蠕变速率/解冻后稳态蠕变速率）与应力水平的变化

关系，两者比值随着应力水平的增加而减小。这是因

为当岩石受冻融循环作用相当于受轴向拉伸的低周

疲劳荷载作用 [37]，而轴向应力的存在削弱了冻胀力对

岩石骨架的作用 [38]，导致岩石骨架因冻融作用产生的

损伤减小。 
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Fig. 10    Creep rate
 

表 5    稳态蠕变速率

Table 5    Creep rate of steady state
 

岩样编号 冻结（解冻）温度/°C 加载等级 ε′c /（10−6 h−1） ε′c(F−T) /（10−6 h−1）

B-1 −5（25）
1 0.93 4.32
2 4.61 7.26

3 10.93 15.82

B-2 −10（25）
1 3.67 19.48
2 8.08 21.54

3 16.10 31.84

B-3 −15（25）
1 3.83 25.14
2 13.04 32.19

3 — —

 

40

32

24

16

8

0

第1级蠕变
第2级蠕变
第3级蠕变

解
冻

后
稳

态
蠕

变
速

率
/（

1
0
−6

 h
−1

）

−5 −10 −15
冻结温度/℃

图 9    解冻后稳态蠕变速率与冻结温度的关系

Fig. 9    Relationship between steady-state creep rate after
thawing and freezing temperature

2024 年 宋勇军，等：砂岩冻结/解冻过程蠕变特性研究  ·  99  ·



3.3.3    冻结/解冻作用对长期强度的影响

本文采用等时曲线法 [39] 确定岩石的长期强度，即

采用 Boltzmann 原理将蠕变曲线处理成应力 -应变等

时曲线簇，则曲线簇由密集变疏松处所对应的应力值

即为该岩石的长期强度。以 B-0 岩样为例，绘制应力-
应变等时曲线簇如图 12 所示，图中曲线簇由密集变

疏松处所对应的应力值即为该岩样长期强度（σ∞）。
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图 12    B-0 岩样的等时曲线簇

Fig. 12    Cluster of isochronous curves of sample B-0
 

据上述方法，采用冻结 /解冻作用下砂岩（B-1、B-
2、B-3）常温阶段蠕变曲线作出应力 -应变等时曲线

簇，以此确定冻结/解冻作用下砂岩长期强度，结果见

表 6。其中，σ∞/σc 为长期强度与峰值强度的比值。经

温度−5 °C/25 °C、−10 °C/25 °C、−15 °C/25 °C 冻融作用

后 ， B-1、 B-2、 B-3 岩样的 σ∞/σc 分别为 0.613、 0.563、
0.480。另一方面，经冻融作用后，B-1、B-2、B-3 岩样

长期强度是常温状态长期强度的 96.33%、 88.52%、

75.44%。

上述表明受荷岩体经冻融作用时冻结温度越低，

解冻后的岩体越容易发生失稳破坏，对工程的长期稳

定性更加不利[40]。冻融循环过程冻结温度降低造成岩

石损伤程度增大，导致长期强度降低。究其原因，冻

结温度降低，岩石内部孔隙水相变程度增加，导致砂

岩孔隙度增大、颗粒间黏聚力降低，在较低恒定荷载

作用下岩石内部颗粒不断发生变形，最终发生宏观破

坏[41]。 

4    结论

（1）冻结/解冻过程对岩石蠕变变形产生显著的影

响。冻结/解冻过程砂岩先后经历 5 个阶段，分别为冷

缩阶段、冻胀阶段、冻结稳态蠕变阶段、融缩阶段和

解冻后稳态蠕变阶段。冷缩阶段与融缩阶段岩样发

生收缩变形；冻胀阶段岩样发生膨胀变形。

（2）冻结温度和轴向应力是影响冷缩、冻胀和融

缩现象的重要因素。同一冻结温度下，冷缩与冻胀变

形随应力水平增加而减小；同一应力水平下，冻胀阶

段变形随冻结温度的降低而增大。解冻过程蠕变，融

缩变形随冻结温度的降低而增大、随应力水平增大而

增大。

（3）砂岩蠕变过程经 −5  °C/25  °C、 −10  °C/25  °C、

−15 °C/25 °C 冻融作用后，其蠕应变较常温状态下增长

范围分别为 102%～193%、81%～126%、105%～194%；

解冻后，稳态蠕变速率较冻结前最大增加 3.65，4.31，
5.56 倍，最小增加 0.45，0.98，1.47 倍；其长期强度与峰

值强度比值分别为 0.613，0.563，0.480，是常温状态长

期强度的 96.33%、88.52%、75.44%。
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Fig. 11    Ratio of creep strain and ratio of steady-state creep rate
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