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Abstract: The analytical calculations of unsaturated steady-state seepage in the widespread layered soils wewre
relatively rare. Based on the Darcy seepage theorem and the continuity condition of soil layer interface, a

mathematical model describing the steady seepage process of unsaturated layered soil was constructed. The
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analytical expressions of matric suction, effective saturation, and suction stress along the elevation for the same
profile of layered soil were obtained by using the separation variable technique and mathematical induction. The
analytical algorithm was validated based on the COMSOL numerical analysis platform, which enabled the
analytical solution of the steady-state seepage process in unsaturated layered soils. Then, the influence of soil layer
interface on seepage process was discussed and the sensitivity analysis of parameters was carried out. The analysis
shows that: (1) Under the same infiltration conditions, the matric suction of sand at the same elevation is the
highest, while that of clay is the lowest. The difference in surface seepage rate has the greatest impact on the
distribution of effective saturation in the silt layer, while it has the smallest impact in the sand layer. (2) The
suction stress in the clay layer increases almost linearly, while the suction stress in sand increases first and then
decreases along the elevation. The presence of soil interface can affect the growth rate of matric suction along the
elevation, leading to a sudden change in the distribution of effective saturation and suction stress along the
elevation. (3) The smaller Gardner model parameter «, the greater the matric suction value at the same elevation,
while the smaller the &, value of saturated soil, the slower the growth rate of matric suction. The smaller the values
of k, and a, the slower the rate of effective saturation reduction. The smaller the value of a or the larger the value
of k,, the greater the suction stress value at the surface. The research results can provide theoretical support for

engineering geological problems such as slope stability.
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Fig. 7 Characteristics of matric suction distribution in the double-layered soil under stable seepage condition
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