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Seepage-induced sand-leakage karst collapse mechanism
considering the soil arching effect
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(1. Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China; 2. Fuzhou
Management Center, Jiangxi Communications Investment Group Co. Ltd., Fuzhou, Jiangxi 344000, China;

3. Geological Environmental Center of Hubei Province, Wuhan, Hubei 430039, China)

Abstract: Sand-leakage karst collapse often occurs in the hidden karst area of the binary structure covering layer
due to seepage. However, further research is needed to understand the macro and micro mechanical mechanisms of
such collapse and the mechanical evaluation model for sand-leakage initiation. This study used the Lujia Street
karst collapse, induced by the lowering of the karst water level in the binary structure covering layer karst area of
Wuhan City, as a case study. The macro and micro mechanical mechanisms of collapse failure were investigated
through physical model tests and PFC (particle flow code)-CFD (computational fluid dynamics) coupled
numerical experiments. A soil arch limit equilibrium mechanical evaluation model was developed to assess sand
leakage initiation under seepage conditions. The results show that the critical water level differences for the of

Lujia Street karst collapse revealed by physical model experiments and numerical model experiments are 7.2 m
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and 8.0 m, respectively, with an error of approximately 10%. After sand leakage begins , the pore water pressure at

the bottom of the sand layer drops sharply, leading to an increase in surface subsidence. Before reaching the

critical water level difference, the velocity of the sand layer at the karst opening increases while the pore water

pressure decreases. The horizontal stress, vertical stress, and lateral pressure coefficient of the soil arch increase,

and the rate of hydraulic gradient increase is significantly greater than the lateral pressure coefficient. According to

the constructed limit equilibrium model of soil arch under seepage, it is found that as the water level difference

increases, although the collapse force and anti-collapse force in the soil arch increase, the increase in collapse force

is more pronounced. This study is of great significance for improving the level of disaster prevention and

monitoring of sand-leakage karst collapse.

Keywords: binary structure covering layer; sand-leakage karst collapse; seepage effect; critical water level

difference; soil arch effect
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Fig.1 Geological profile of Lujia Street collapse
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Fig.3 Schematic diagram of the model test device
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Fig. 5 Pore water pressure curve of physical model test under
seepage conditions with different water level difference
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Fig. 6 Displacement monitoring curve of physical model test
under seepage conditions with different water
level difference
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Table 1 Numerical simulation mesoscopic parameters
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Fig. 11 Deformation, failure, and force chain of overburden at different evolutionary stages
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Fig. 12 Schematic diagram of unit soil force of soil arch
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Fig. 13 Curves of stress and lateral pressure coefficient changing

with simulation time step
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