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Abstract: Currently, limited studies focused on the variations in submarine fresh groundwater discharge rates,
seawater recirculation rates, and their respective proportions with tidal level change in sandy intertidal zones. This
study conducted in-situ dynamic monitoring of the salinity at the groundwater seepage face in a sandy tidal flat in
Xiamen Bay. Using variable-density flow numerical model, the dynamic groundwater salinity in the intertidal zone
was simulated to calculate the submarine fresh groundwater discharge in the intertidal zone. The results show
that groundwater salinity at different locations in the intertidal zone exhibits varying patterns with the tides.
The submarine groundwater discharge at a typical profile was estimated to be 17.47 m*(m-d), in which the
submarine fresh groundwater discharge was calculated to be 3.19 m*/(m-d), accounting for 18.26% of the total
submarine groundwater discharge. In contrast, recirculated submarine groundwater discharge was estimated to be
14.28 m’/(m-d), constituting 81.74% of the total submarine groundwater discharge and thus playing a dominant
role. Under the influence of tides, seawater infiltration and submarine groundwater discharge are alternate. The
alternation during ebb tide occurs slightly earlier than the slack water level, while during flood tide, it occurs
slightly later. The peak moment of seawater infiltration rate and submarine groundwater discharge rate precede the
tidal peaks at high and low tides, respectively. Throughout the tidal cycle (from high tide to the next high tide), the
proportion of submarine fresh groundwater discharge gradually increases. The variation in groundwater salinity in
the intertidal zone can represent the changes in submarine fresh groundwater discharge. The proportion of
submarine fresh groundwater discharge in the total submarine groundwater discharge is relatively high in this
typical profile than that in the previous studies. It indicates the presence of a substantial amount of submarine fresh
groundwater discharge in the intertidal zone. Through sensitivity analysis, it reveals that inland hydraulic head has
significant influences on submarine fresh groundwater discharge and spatial distribution of salinity. This study can
provide scientific information for the development and utilization of coastal groundwater and the management of
coastal environments.
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Fig.1 Study area and distribution of monitoring points
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Fig. 8 Spatial distribution of groundwater salinity in the intertidal zone under different permeability coefficients
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Fig. 10 Spatial distribution of groundwater salinity in the intertidal zone under different inland hydraulic heads
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Fig. 11 Fitting of groundwater salinity under different parameters
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