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Research progress on the response characteristics and indicative
significance of microorganisms to seawater intrusion

ZHI Chuanshun', HU Xiaonong', CHEN Lin*, JIAO Yufei', BAI Jing'
(1. School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong 250022, China;
2. Shenyang Geological Survey Center, China Geological Survey, Shenyang, Liaoning 110034, China)

Abstract: Seawater intrusion is a global environmental geological issue that poses a serious threat to the water
supply security and ecological environment of coastal cities. Microorganisms exhibit a high sensitivity to
environmental changes, and in recent years, numerous scholars have turned their attention to the response
characteristics of microorganisms to seawater intrusion, offering new perspectives and methodologies for research
in this field. To completely understand the research progress in this field, this study, based on the Web of Science

core database, employed bibliometric visualization analysis methods to analyze the current status, hotspots, and
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trends of research on microbial response characteristics to seawater intrusion. The results indicate that significant
developments in this emerging research area have mainly occurred after 2011, with a consistent increase in
publication volume and citation counts. Chinese scholars actively engage in the research of microbial responses to
seawater intrusion, ranking second in terms of both publication output and h-index, with a significant academic
impact. Keyword cluster analysis reveals that popular research topics in this field encompass the response of
groundwater microbial communities to seawater intrusion, investigations into soil microbial communities’
response to seawater intrusion, and the geochemical cycling of elements in conjunction with microbial processes.
The study indicates that the succession of microbial communities in brackish-saline water transition zones is
jointly influenced by factors such as salinity, dissolved oxygen, temperature, organic carbon, and pH. The primary
controlling factors vary with hydrogeological conditions. The intrusion of seawater impacts microbial-mediated
processes involved in the cycling of carbon, nitrogen, sulfur, iron, and other substances. The identification of
typical marine bacteria and halophilic archaea found in aquifers holds significant indicative value concerning
seawater intrusion. This serves as a potent complement to traditional investigative methods for seawater intrusion,

offering substantial potential and advantages in distinguishing paleoseawater intrusion and seawater intrusion.

Keywords: seawater intrusion; groundwater; microbial community; geochemistry; bibliometric
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Table 1 Traditional investigation methods of seawater intrusion
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Table 2 Top 10 countries in terms of the number of published
papers from 2011 to 2023
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HE IS S SR S L FEl K AR X E T
ZRMEm. A IEAAHCH EE, MERTLAE O
BT AU 1R K b AE A 7 W e BR T (Methanococ-
cus) , B A M W (Candidatus Nitrosoarchaeum) . i
IR & (Desulfovibrio) . Wi if J& 7 (Sulfobacterales) I %
it JR B (Geopsychrobacter sp.) 55, T HE 2 6% 12 2L &
o K AP AL AN (Sulfuriflexus mobilis ) X TR AR
1 (Desulfomicrobium baculatum) 9\~ 5 B 12 Ak VE FI Xt
T R 6 o (0 Vs e B o AR, AR Tl K A= 1m) I
B #0075 1] o 3 JE S M3t AT 11, 5@ 3k PICRUSSE
AR TR & WRE | B AR 2 BE 2 R R AT
I, = R 5 v 09 S R AR 85 ) 8 2 (X ( Denitrification-nirk
Denitrification-nosZ, DNRA-nrf4, Nitrogen Fixation-

nifH) . BRI DI BE 3L A . (Methane oxidation-mmoA )
FiAR 8 T i £ A (Sulfite reduction-dsr4 ) ®¥,

T 7K AR B A2 ) b 3K AR 2 996 B0 1) 5% ey 3 R
BNy 2 IR AR T BSOL Ve BE 1 T, 23 B s DU AR
Hh B R R TR AT T, R 3 R T 5 b T
R R A S NN A SR % N e S 1 0 N
IR W TR 2 30 it 3 2 K B BE A Sy B4, (R
ot B AL, TR W R R SRR HTRR & WY e DR A8 S Ak ik
R WU b L YR K VS TR WY o Y S R T
O DA B B B Ak R R == AR A HE R A
HESL ]

Eh B B AR A TR 23 X0 i A B R Ak B e AR
s, Hx 2B S —E A A S IHAER
Ko BLJEHIRGT SR W Eh BE 3G 02 R AH 1k S g 3 =%, i
X IAEAAE R B s2 e A Sy 52 2% BT AR A 4
PRI A Vi B A 50 R 1 6 RURRCRR AN B B8 0, RO AT ARl
A WA SRR S O 28 T B R TR B R R AR 1
A9 IO R 1, 0 S U T M DX ™ B A RS G

AN, A A AR i S 0 3K Bl Y B A 3R e R
BRAG IR UIA OC . R B — A A T A B i
B PR IE B, A B B R BT B SR
AH AR FH 18] 422 52 e W 0 R o A8, = M0 38 5 4 i ity
S M BIE X IR 5 AR A AR N,
B IR YY) B, RSB R #h B 1,

25 EPR, WK AZALHBUE 1 3T 7K B A 380
AEWE TR LR, O B2 & A A . AL B
BREFITTR IR LR (K 4) .

3.2 K ANRTERTMEY

TR AR X 1T 7K A3 R R ) A8 v () Ak
YIRE T A BUA] 77 A S, JF ik — 0 R Je R Bk
e EER R . W —MAERE , AR 532K 11
YRR R IR AT DA R K AR EA . B TR
A B T 26 0 P B 4 R R AN 2 I G i) AR H
Z o, Bl F TR S AT AR T EE DL TR K AR
55 FIRRIE A Yo PR, A SCEA Rl X g 7K A AR 1Y
TR AT T 845 (3R 3) .

TEJR IR K ZE B X 1R K A, A8 1] (Proteobac-
teria) & e 5 PN TR 1128, 7 LA i 50%, ik
FHUFF 1] (Bacteroidetes) . JEREW ] ( Firmicutes) . Ji
2811 ] (Actinobacteria) . ¢35 18 1 1( Chloroflex ) 1747531
TV Vi i b b R K rh e BV 2 BL R B VERUAE Y, a0
FE AR e 11 4R K & 0 I B2 & B (Oceanospirilla-
les) FN A2 %% B M 56 B (Alteromonadaceae) “"; 16T 7R Bk
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Fig. 4 Conceptual diagram of microbial response to seawater intrusion
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Table 3 Signature microorganism of seawater intrusion in the typical study areas
s wpmns P g SHAKT AR IRES EEWWAT 5%
FEILRE WEFEIZE H (Oceanospirillales) AT . - o
S FLEAK 126 ~ 796 gl S5 R (Alteromonadaceae) AR TR 1] (Proteobacteria) ﬂﬁi#\ [47]
s
s AT (Marinobacter) . 3885 HL N .
2 4 AR
;ﬁg;ﬁj LBk 93~13442 i M B (Alteromonadales) T ) (Proteobacteria) EhEE R pH (18, 74]
o W W MG 1 (Marine group 1) #5181 (Thaumarchaeota)
R L A R AR .
Bl (Methylomonadaceae ) . BT (Proteobacteria) N
A AT G BB (Paceibacteraceae) 1] (Patescibacteria) ;ﬁfﬁiﬁiﬁ(
el FLBK 379 ~ 1396 B3 H (Woesearchaeales ) W] (Nanoarchaeota) RE STl [55]
G kT E R (Nitrosotaleaceae) . 3k i
TEns A TR SR I (Crenarchaeota)
(Nitrososphaeraceae)
S ZIMFE R Rhodobacteraceae) . ¥ ST . .
HEVONE  fLBUK 350~ 15427 ] FFERL Flavobacteriaceae) S 7] (Proteobacteria) ClefE [16, 46]
WAACHN B (Sulfuriflexus T Bk,
PEEEF AWK 472~20028 EilE] mobilis) . FFAR LB L A W1 (Proteobacteria)  pH. — 48 ALK [43, 66]
(Desulfomicrobium baculatum) IR
A WBREE (Synechococcus sp. ST T Cyanobacteria)
E[EEJE VE I . €C9902) ,
: LBk 4169 ~ 10249 N _ o 2]
JVEE TP & (Marinobacter) . £ L BN )
il AR T 1] (Proteobacteria)
)@ (Halomonas)
" . o R
REAHE g ok 2700~ 18900 i WEGR IR (Desulfovibrio. TIGHIT (Proteobacteria)  MEREFE. 5 [17]
Riteh Desulfopila, Desulfurispora) BT

VL= A Y0 S ED B2 J VG S T U b T 7K v 22 BT FF 7
J& (Marinobacter) . £ ¥4 }i 14 J& (Halomonas) . 28 s ¥
Mt H (Alteromonadales )" “*(1&] 4); £ i [ 5 M 5 Hb
T K & BLLLFT B (Rhodobacteraceae) X B FT 1 FF
(Flavobacteriaceae)"**", L 138 & H I 1E MG V£ IR 45 h
F A 0 L BRAE T 5 K 2 v, SO T I K AR T RE
SRR A AT HE R EOKZE, WU TR
K2 B-IR 7K A8 L X SR v 5 PN Bl 32 4 ) o 52 i 1Y
HEG P, XA () b B 53 A 2R R AR

o T AR T K AR B AR AR SR, anT el
W 1] (Euryarchaeota) I 41 £ 7 B 1] (Nanohaloarcha-
eota) A] TEA i e B PR BT A AR 35, 35 B2 AT 35 300%07,
DRI E 5% 1 200 B BV A 2 A0, 1 2227 38 38 Wi -TR 7K 38
X B VR LB AT T IR 5D, Hong A MY
IR H T AR A AE SR TR ] (Crenarchaeota)
K )7 B 1] (Euryarchaeota) , 43 5 5 i B 112814 60%
K 30%, /il T 1] (Parvarchaeota) ¥ i e /b o 75 74 3E
e B A Al HOK)ZE T, R RIR(0~ 120 m),



2024 4F

ST, 25+ A 0 X ¥ K AR Wi O AR 2 4 7 T S 5 - 199 -

R KW T (Euryarchaeota) W) 3 JE Bl K AR
B B4 5 T K Al TR T ( Thaumarchaeota)
A RV R (LR WS, TRV VR A IR AR
W) v Y B AR T 3K 20% ~ 40% . Jiang S5 7E B A T
UL v & B, & & B ] (Thaumarchaeota) 3 & B
AR BB, TRk . A SO0 R 1Y Hb R Ak A 1R
b SCHEE HIUO, Ma 855 A o [ pig T b R VS Vi R
R K P &S B B (Woesearchaeales ) , 2= B TR |
AE B IR JEAZ AR T, B e R R O PR Hh AR A R B
T, eAh, S & A BRI K AR DX b T K
KN B MG 1 (Marine group 1), H38 % 4346
T FEKAR IR b o DL b SR P A W Mg
R K Af2 B B2 04 R & L

4 BHEERE

(1) 3452, 28 W 7 T 7K AR ] A F 5 v 19 7
FH % B 7, 2011—2023 4F % 408 & SCH: K 51 3¢
R LIS P EBRS 5ixSM, &
S M h IR EE A D EE T HER S =0 R 4R Web of
Science % Bl 4 28, 1% G0 3K i 5% 5 B A B B 2 (envi-
ronmental science) . 7K %% i (water resources) . Hi 3K F} 2%
(geosciences) . 4= 5% (ecology) . 11~ (soil science)
A= W% (microbiology ) 45 Z2 A~ 2# Bk 1 38 Ll o

(2)i# 3 VOSviewer JCHE IR RIS L I, KA R T
HH K 3 DU T RE TR O ot R
Az ) b 3R AL 2 A PR R i ST A . RIRK R L
DGR B I i A2 Eh L W AR AR IR L A LK
pH {55 22 A 7~ (% 52 M, 32 45 IR Bifi 7K SC Ml BT 4%
PR AR AR AL o V7K AR 23 52 e G0 A ) A 5 (R ik
AW BRSEICR BT B AL, B ) B P R

(3) 5 #T # J& (Marinobacter) . £ ¥}l 1 J& (Halo-
monas) . KT EFH Rhodobacteraceae) . AT Flavo-
bacteriaceae) . WG IR T H (Oceanospirillales) . 38 s H.
WL B (Alteromonadales) 55 AT A by g K A AU ) 48
AN, S S TR R R AR AR TR IR s O T
I"] (Euryarchaeota) . 9%k B 7] (Nanohaloarchaeota) .
A T ] (Thaumarchaeota) 55 W6 £ 7 T8 IR0 K AR
HAEERREL,

DIAE B A5 OC 7 Hb R 7K i A W e v 6 i K AR
B4 1, I R AR (TR BE 3R Lok 2 A oK) ik
YRR IE A9, A BT X A R AR AR e NS Bl x
A P B 9 e 2 s e 5 IV 7K By K AR 3 B
255 N R RIS MR R TE X 3 i K AR S a

IKAARTT T B H, 32 S8 Q) K AR R 5 U W4
PRARFR 5 B W BOR S A% G it K AR A Dy vk it 2
FhFE, Z2F0 5 1 B9 AT HLEE B 2 3 T K A AR R I
PR S8 RO Al AR B 2 BN BRI TS K AR
RN AL BLOE IR DR N AR AL R AR, AR I
1B 7 TEE 7R AR W) TR A B ST
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