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摘要：长输油气管道不可避免地要穿越地质环境条件复杂的山区，遭受各类地质灾害威胁。滑坡灾害是最为严重的地质

灾害之一。为了实现管道滑坡灾害的提前预判，通常设定多项监测预警指标进行监测，但是，由于忽略了各指标之间的关

联性，导致大量的错报与误报。本文通过对管道滑坡灾害动态演化过程分析，提出了管道滑坡灾害动态演化的 4 个阶段：

①滑坡区降雨，地表入渗；②地下水位上升，坡体自重增加，岩土力学参数降低；③坡体产生局部变形；④滑坡整体失稳下滑

作用于管道。提取了灾害变形、外界诱发因素、管道应力应变 3 种类型监测关键指标，构建了管道滑坡灾害监测指标体

系，在此基础之上，提出基于灾害动态演化过程的管道滑坡灾害多因素耦合预警模型。该模型通过综合考虑灾害变形指

标、外界诱发指标、管道力学指标之间的耦合关系，构建出了多维度预警等级判据。模型在贵州某天然气管道滑坡开展示

范应用，先后成功发布蓝色、黄色、红色预警信息，为滑坡的应急处置与抢险提供了充足的响应时间，保障了管道的运营安

全。该模型避免了因降雨过多即发出高预警等级的问题，进一步提高了预警准确度，使得预警结果更符合实际，可以为管

道滑坡灾害的监测预警工作提供一定的参考与借鉴。
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and  are  threatened  by  various  geological  disasters,  the  most  severe  of  which  is  landslides.  To  achieve  early-
warning of pipeline landslide hazards, multiple monitoring and early-warning indicators are typically established.
However, the failure to account for the correlation between various indicators has led to a high frequency of false
alarms.  Based  on  the  analysis  of  the  dynamic  evolutionary  process  of  pipeline  landslide  hazards,  this  study
proposes four stages of pipeline landslide hazards: (1) rainfall on the landslide leads to surface infiltration; (2) the
groundwater level rises increasing the slope self-weight increases and reducing the geotechnical parameter; (3) the
slope has  undergone local  deformation;  (4)  the  landslide  slides  entirely  and threatens  pipeline  safety.  Three  key
monitoring indicators of landslide hazard deformations, external induced indicators, and pipeline stress-strain were
extracted  to  construct  a  monitoring  index  system  for  pipeline  landslide  hazards.  On  this  basis,  a  multifactor
coupled  early-warning  model  for  pipeline  landslide  hazards  is  proposed.  This  model  integrates  the  relationships
between  landslide  deformation  indicators,  external  triggers,  and  pipeline  mechanical  responses,  creating  a
multidimensional early-warning criterion. This early-warning model was applied in a natural gas pipeline landslide
in Guizhou Province, and successfully issued blue, yellow, and red early-warning information, providing sufficient
time for emergency response and rescue of the landslide, ensuring the safe operation of the pipeline. This model
can  avoid  the  problem of  high  early-warning levels  due  to  excessive  rainfall,  further  improving the  accuracy of
pipeline  landslide  hazards  early-warning  and  making  the  early-warning  results  more  realistic.  This  study  can
provide a valuable reference for the monitoring and early-warning work on pipeline landslide hazards.
Keywords：pipeline  landslide  hazard；dynamic  evolutionary  process  of  disaster；multifactor  coupling； early-
warning model

 

管道滑坡灾害是指对管道输送系统安全和运营

环境造成危害的滑坡灾害。滑坡对穿越的管道危害

巨大，常导致管道挤压变形，造成输送介质泄漏，污染

周围环境，更严重的甚至导致爆炸，影响周围群众生

命财产安全 [1 − 2]。例如：2017 年 7 月 2 日，位于贵州省

黔西南州的中石油输气管道，受当地持续降雨影响，

外侧公路边坡下陷侧滑，导致天然气泄漏引发燃烧爆

炸 [3]；2015 年 12 月 20 日，深圳市光明新区的红坳渣土

受纳场发生滑坡，事故造成西气东输管道破裂泄漏 [4]；

2019 年 3 月，受极端天气影响，伊朗厄尔布尔士省山

体滑坡导致天然气管道破裂停输[5]。

滑坡灾害可以通过自动化监测手段进行风险预

警 [6 − 7]。目前针对滑坡的预警主要包括两个方面：一

是基于滑坡变形的预警，根据滑坡变形速率或变形曲

线切线角来推测滑坡所处的不同变形阶段，给出相应

级别的预警判据 [8 − 10]；二是基于模拟实验 [11] 与数理统

计 [12 − 14]，给出触发滑坡的临界降雨条件，构建滑坡失

稳的临界雨强判据。针对管道滑坡灾害，部分学者对

承灾对象管道开展了相关应力应变监测技术研究，葛

华等 [15] 推导出滑坡区管道位移和应力力学模型，给出

不同级别预警等级下管道允许附加应力的阈值；冷建

成等 [16] 基于有限元应力分析确定敏感的应力监测部

位；许学瑞等 [17] 提出一种滑坡多发区管道应变监测的

安装方法；另有文献提出管道应变监测的原理，并给

出常用管道允许附加应力阈值参考表 [18 − 19]。以上研

究可以为管道滑坡灾害监测预警提供灾害变形、外界

诱发因素、管道力学等单指标方面的预警判据参考。

已有研究成果表明，滑坡发生是一个动态变化过

程，在演化过程中各系统之间表现出协同耦合效应。

因此，基于管道滑坡的动态演化过程，综合考虑滑坡

变形、承灾对象（管道）、外界诱发因素的影响，通过

构建基于地灾变形指标（X）、外界诱发指标（Y）、管道

力学指标（Z）的多维度预警矩阵，提出了一种基于灾

害动态演化过程的管道滑坡灾害多因素耦合预警模

型 [19 − 20]，实现对单体管道滑坡风险的预警，进一步提

高预警准确度，预警结果更符合实际，可为管道滑坡

灾害的监测预警工作提供一定的参考与借鉴。 

1    管道滑坡灾害动态演化过程

管道滑坡灾害的形成是地质动态演化过程 [21 − 23]，

可分为 4 个阶段，如图 1 所示：①滑坡区降雨，地表入

渗；②地表入渗后，导致地下水位上升，坡体自重增

加、岩土力学参数降低；③随着坡体自重增加、岩土

力学参数的降低，导致坡体产生局部变形；④进一步

的累计破坏到一定程度后，造成滑坡整体失稳下滑

作用于管道上，导致滑坡体剪切管道，造成管道弯曲、

2024 年 吴　森，等：基于灾害动态演化过程的管道滑坡灾害多因素耦合预警模型  ·  183  ·



断裂。 

2    管道滑坡灾害预警模型

通过灾害变形指标（X）、外界诱发指标（Y）、管道

力学指标（Z）3 大类监测指标构建的三维预警判别矩

阵，实现对滑坡灾害的预警。 

2.1    监测指标体系构建

根据管道滑坡灾害动态演化过程，可以针对性开

展相关监测，包括：降雨、土壤含水率、灾害的变形，

管道应力应变等，以求在滑坡发生变形破坏之前，捕

捉相关信息，为管道安全运营提供信息支撑。根据监

测对象不同，构建基于灾害变形指标、外界诱发指

标、管道力学指标的监测指标体系（图 2）。
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图 2    管道滑坡灾害监测指标体系

Fig. 2    Monitoring index system for pipeline landslide hazards
  
2.2    预警等级

以管道滑坡灾害变形发展演化阶段、变形速率、

外界诱发因素、管体附加应力等监测数据为基础，综

合研判，进行中长期、短期和临灾预警。管道滑坡灾

害险情预警划分为 3 级：Ⅰ级（特别严重）、Ⅱ级（较

重）、Ⅲ级（一般），分别赋以红色、黄色、蓝色标志 [18]。

（1）红色预警：警报级（Ⅰ级）；

（2）黄色预警：警示级（Ⅱ级）；

（3）蓝色预警：关注级（Ⅲ级）。 

2.3    预警阈值与指标级别划分

（1）灾害变形指标（X）
灾害变形指标阈值主要考虑２个因素：一是变形

的绝对值，即变形监测中变形具体值；二是相对值，即

从变化速率及曲线上判断滑坡灾害所处变形阶段。

不同类型、不同规模的滑坡灾害，地表变形绝对

量差距较大，要根据灾害发育特征，考虑管土耦合关

系，根据管道极限承载，按照最不利工况下管土协同

变形，反推灾害变形指标的各级判别等级[24]。

以匀速变形阶段速率为基准，对监测曲线做无量

纲处理，实现切线角的转换。通过灾害监测数据曲线

与变化速率，判断滑坡灾害所处变形阶段，设置对应

的指标阈值[8]。

为避免错报漏报，按照“就高不就低”的原则，取

变形量绝对量值与监测曲线切线角值进入对应指标

分级区间的高者，作为灾害变形指标的综合分级。

（2）外界诱发指标（Y）
降雨、土壤含水率、地下水位变幅等作为灾害的

外界诱发指标，可以通过数值模拟或类似灾害进行推

演：分析灾害在不同降雨条件下的稳定性系数，拟合

安全系数分别为 1.15，1.05，1.0 时持续时间与雨强关
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图 1    管道滑坡灾害动态演化过程

Fig. 1    Dynamic evolutionary process of pipeline landslide hazards
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系曲线，通过现实降雨持续时间（T）和雨强（I），判别

外界诱发因素的综合分级[11 − 14]（图 3）。
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图 3    不同安全系数下降雨持续时间与雨强关系曲线

Fig. 3    Relation curves between rainfall time and rainfall
intensity under different factors of safety

 

（3）管道力学指标（Z）
根据《油气管道滑坡灾害监测规范》 [18]，布设管道

应力应变监测站，获取管道附加应力值。按照被监测

管道附加应力允许超过的百分比及管道应力曲线切

线角 α 两个指标确定。切线角判别方式与此类似。

① 附加应力超过允许附加应力的 30% 或管道应

力曲线超过匀速变化达到初始加速阶段，管道力学指

标为蓝色级别。

② 附加应力超过允许附加应力的 60% 或管道应

力曲线达到中加速阶段，管道力学指标为黄色级别。

③ 附加应力超过允许附加应力的 90% 或管道应

力曲线达到加速阶段，管道力学指标为红色级别。

（4）预警指标级别划分

各类别预警指标级别划分标准，参考表 1。
 
 

表 1    各类别指标级别划分标准

Table 1    Classification standards for indicators of various
categories

 

指标分级 灾害变形指标 外界诱发指标 管道力学指标

蓝色级 Xblue≤X＜Xyellow Yblue≤Y＜Yyellow Zblue≤Z＜Zyellow

黄色级 Xyellow≤X＜Xred Yyellow≤Y＜Yred Zyellow≤Z＜Zred

红色级 X≥Xred Y≥Yred Z≥Zred

　　注： Xblue、Xyellow、Xred分别为灾害变形指标蓝色级、黄色级、红色级阈值；
Yblue、Yyellow、Yred分别为外界诱发指标蓝色级、黄色级、红色级阈值； Zblue、
Zyellow、Zred分别为管道力学指标蓝色级、黄色级、红色级阈值。
  

2.4    预警模型

通过灾害变形指标、外界诱发指标、管道力学指

标构建三维矩阵预警模型，实现对管道灾害的预警。

在考虑各指标权重时，结合管道滑坡灾害 4 个阶段的

动态演化过程。第一阶段，当降雨达到对应的阈值区

间时，如果灾害变形与管道受力未见明显增加，为避

免单一降雨条件触发高级别预警的“尴尬”，相应的预

警等级降低；第二、三阶段，当坡体地下水位上升，自

重增加，岩土力学参数降低时，灾害体开始变形，达到

对应阈值区间时，滑坡灾害会进一步作用于管道，威

胁管道的安全，预警等级提升；第四阶段，当管道受力

达到对应阈值区间时，进一步提升灾害的预警等级。

针对监测工程实际应用，若监测类型不足 3 种，可

做降维处理：两种监测类型按照二维矩阵预警，一种

监测类型按照对应阈值进行一维预警。

（1）一维预警模型

一维预警模型适用于仅有一种类别监测指标的

预警，共 3 种情况：仅有灾害变形指标、外界诱发指标

或管道力学指标。相应的预警等级见表 2。同一类预

警指标下有多种监测手段，按照就高不就低原则，取

最高级作为预警等级。
  

表 2    一维预警模型

Table 2    One-dimensional early-warning model
 

预警等级 灾害变形指标 外界诱发指标 管道力学指标

蓝色预警 Xblue≤X＜Xyellow Yblue≤Y＜Yyellow Zblue≤Z＜Zyellow

黄色预警 Xyellow≤X＜Xred Yyellow≤Y＜Yred Zyellow≤Z＜Zred

红色预警 X≥Xred Y≥Yred Z≥Zred
 

（2）二维预警模型

二维预警模型适用于有两种类别监测指标的预

警，共 3 种组合矩阵方式，分别为：（X，Y）、（X，Z）、（Y，
Z），对应的预警等级判别见表 3、图 4。
  

表 3    二维预警模型组合矩阵

Table 3    Combining-matrix of two-dimensional
early-warning model

 

预警等级 各类指标组合矩阵

蓝色预警

（X，Y） （蓝，蓝）、（蓝，黄）、（蓝，红）

（X，Z） （蓝，蓝）、（黄，蓝）

（Y，Z） （蓝，蓝）、（黄，蓝）、（红，蓝）

黄色预警

（X，Y） （黄，蓝）、（黄，黄）

（X，Z） （红，蓝）、（蓝，黄）

（Y，Z） （蓝，黄）、（黄，黄）

红色预警

（X，Y） （黄，红）、（红，蓝）、（红，黄）、（红，红）

（X，Z） （黄，黄）、（红，黄）、（蓝，红）、（黄，红）、（红，红）

（Y，Z） （红，黄）、（蓝，红）、（黄，红）、（红，红）

　　注：如某一类型指标达到以上区间级别，另一指标未达到，未达到的指
标按照最低分级取，以满足以上判别。
 

（3）三维预警模型

三维预警模型适用于 3 种类别监测指标齐全的预

警，对应的预警等级判别见表 4、图 5。 

3    应用案例

贵州某天然气管道滑坡位于低山斜坡中部，坡面

呈阶梯形，上缓下陡，斜坡整体坡度 16°，坡向 220°，整
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个滑坡分为滑坡区与牵引影响区。滑坡区主滑方向 220°，
宽 165 m，长 106 m，厚 15.0～24.2 m，体积约 35×104 m3；

牵引影响区破坏方向 236°，宽 110 ～145 m，长 51.0 m，

滑体厚 7.0～25.8 m，体积约 11.9 × 104 m3。滑坡总方量

约 46.9 × 104 m3，为中型土质滑坡。管道横向穿越滑坡

的牵引影响区，敷设长度约 155 m。

2020 年 7 月 9 日，滑坡前部出现变形失稳迹象，

坡体拉张裂缝发育，中前部堡坎出现不同程度鼓胀与

垮塌，路面局部下错，并有向管道方向扩展趋势。为

了监控灾害风险，前期沿管道敷设方向布设了 2 个防

护工程倾斜监测站、3 个地表位移 GNSS 监测站、1 个

雨量监测站。

基于灾害变形指标与外界诱发指标构建二维预

警模型，如图 4（a）所示。预警规则：灾害变形指标

包含地表位移与防护工程倾斜两种类型，根据管道

所能承受的最大位移量，按照最不利工况，即管土

协同变形考虑，反推地表位移量作为不同级别分级

阈值；防护工程倾斜值设置同上述方法；地表位移

与防护工程倾斜曲线切线角按照 45°、80°、85°分级[6, 8]，

按照就高不就低原则取最高级作为灾害变形指标的

等级，见表 5。运用有限元软件建模分析滑坡安全

系数为 1.15，1.05，1.0 时降雨持续时间与雨强关系曲

线，通过现实降雨持续时间和雨强组成的点（T，I）所
处位置，给出对应的外界诱发指标 Y 的等级 [6]，如图 3
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图 4    二维预警模型

Fig. 4    Two-dimensional early-warning model

 

表 4    三维预警模型组合矩阵

Table 4    Combining-matrix of three-dimensional early-warning model
 

预警等级 各类别指标级别组合矩阵

蓝色预警 （蓝，蓝，蓝）、（蓝，黄，蓝）、（蓝，红，蓝）、（黄，蓝，蓝）、（黄，黄，蓝）

黄色预警 （黄，红，蓝）、（红，蓝，蓝）、（红，黄，蓝）、（红，红，蓝）、（蓝，蓝，黄）、（蓝，黄，黄）、（蓝，红，黄）、（黄，蓝，黄）、（黄，黄，黄）

红色预警
（黄，红，黄）、（红，蓝，黄）、（红，黄，黄）、（红，红，黄）、（蓝、蓝、红）、（蓝，黄，红）、（蓝，红，红）、

（黄，蓝，红）、（黄，黄，红）、（黄，红，红）、（红，蓝，红）、（红，黄，红）、（红，红，红）

　　注：括号里自左至右依次表示灾害变形指标、外界诱发指标、管道力学指标对应的指标分级；如某一类或两类指标达到以上区间级别，有指标未达到，未
达到的指标按照最低分级取，以满足以上判别。
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所示。

2021 年 8 月 13 日—9 月 1 日，管道监测预警平台

按照该二维预警模型先后成功发布蓝色、黄色、红

色预警信息，为滑坡的应急处置与抢险提供了充足

的响应时间，经过应急处置与应急抢险后，滑坡变

形趋于平稳，从而保障了管道的平稳安全运营（图 6、

图 7）。
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Fig. 6    Analysis of No.1 inclination displacement of protective construction and rainfall monitoring curve
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4    结论

（1）管道滑坡灾害的形成是一个地质动态演化过

程，分为 4 个阶段：①滑坡区降雨，地表入渗；②地下

水位上升，坡体自重增加，岩土力学参数降低；③坡体

产生局部变形；④滑坡整体失稳下滑作用于管道。

（2）基于管道滑坡灾害动态演化过程，提取关键

监测指标，通过地灾变形指标、外界诱发指标、管道

力学指标构建滑坡灾害监测指标体系。

（3）综合考虑地灾变形指标、外界诱发指标、管道

力学指标之间的地质动态演化耦合关系，提出基于灾

 

表 5    滑坡预警规则

Table 5    Landslide early-warning rules
 

指标类别
指标分级

蓝色级 黄色级 红色级

灾害变形
指标

地表位移量/（mm） 30 80 150
防护工程倾斜量/（°） 0.5 1 2

切线角/（°） [45,80） [80，85） ≥85
外界诱发

指标
降雨持续时间与
雨强组成的点

F=1.15、F=1.05
拟合曲线之间

F=1.05、F=1
拟合曲线之间

F=1
拟合曲线之上
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害动态演化过程的管道滑坡灾害多因素耦合预警模

型。分析案例表明由该模型触发的预警等级更符合

实际情况，预警的准确性得到进一步的提升。
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