ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD 收录期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于表面能量平衡模型的张承地区蒸散发研究

董祥旺 金晓媚 张绪财 殷秀兰 金爱芳 郎捷 罗绪富 马靖宣

董祥旺,金晓媚,张绪财,等. 基于表面能量平衡模型的张承地区蒸散发研究[J]. 水文地质工程地质,2023,50(1): 13-20 doi:  10.16030/j.cnki.issn.1000-3665.202204007
引用本文: 董祥旺,金晓媚,张绪财,等. 基于表面能量平衡模型的张承地区蒸散发研究[J]. 水文地质工程地质,2023,50(1): 13-20 doi:  10.16030/j.cnki.issn.1000-3665.202204007
DONG Xiangwang, JIN Xiaomei, ZHANG Xucai, et al. Research on regional evapotranspiration in the Zhangcheng area based on the SEBS model[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 13-20 doi:  10.16030/j.cnki.issn.1000-3665.202204007
Citation: DONG Xiangwang, JIN Xiaomei, ZHANG Xucai, et al. Research on regional evapotranspiration in the Zhangcheng area based on the SEBS model[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 13-20 doi:  10.16030/j.cnki.issn.1000-3665.202204007

基于表面能量平衡模型的张承地区蒸散发研究

doi: 10.16030/j.cnki.issn.1000-3665.202204007
基金项目: 国家自然科学基金项目(41372250);行政事业类专项项目(121201014000150003)
详细信息
    作者简介:

    董祥旺(1998-),男,硕士研究生,主要从事工程地质与水文地质方面的研究。E-mail:553741735@qq.com

    通讯作者:

    金晓媚(1968-),女,博士,教授,主要从事水环境遥感和生态水文学方面的研究。E-mail:jinxm@cugb.edu.cn

  • 中图分类号: P641.69

Research on regional evapotranspiration in the Zhangcheng area based on the SEBS model

  • 摘要: 张家口承德地区是京津冀城市群生态安全的重要屏障,针对该地区长时间序列实际蒸散的时空变化研究较少,以张家口承德地区为研究区,基于表面能量平衡模型(SEBS)结合MODIS和GLDAS数据反演了研究区2001年1月—2020年12月逐月的蒸散量,将反演结果与MOD16A2数据在趋势上进行了对比,并用2021年7月的野外实测数据在像元尺度上对其进行验证,利用Sen+MannKendall显著性检验方法对其时空趋势变化进行了分析,用相关性分析研究了其影响因素。结果表明:模型蒸散量反演结果与MOD16A2数据在月尺度上相关性良好,与野外实测数据的相对误差小于15%,具有较高的可靠性;研究区的年蒸散量在20 a间呈现波动上升趋势,最大值为2013年的545 mm,最小值为2002年的348 mm,且承德地区的蒸散量明显高于张家口地区;20 a间研究区75.41%的区域蒸散量基本稳定不变,5.13%的区域蒸散量增加,1.11%的区域蒸散量显著降低,18.35%的区域蒸散量轻微降低;气温、植被对蒸散量的影响具有显著的正相关性,不同土地用地类型下蒸散量由高到低的顺序为:林地>水体>草地>耕地>建设用地>未利用土地。
  • 图  1  研究区及野外试验点位置示意图

    Figure  1.  Location of the study area and the test site

    图  2  2020年研究区蒸散量空间分布图

    Figure  2.  Spatial distribution map of evapotranspiration in the study area

    图  3  张承地区2001—2020年蒸散量值

    Figure  3.  Evapotranspiration values of Zhangjiakou and Chengde from 2001 to 2020

    图  4  研究区月均蒸散量值

    Figure  4.  Average monthly evapotranspiration values in the study area

    图  5  研究区2001—2020年SEBS与MOD16A2数据对比

    Figure  5.  Comparison of the SEBS and MOD16A2 data from 2001 to 2020 in the study area

    图  6  研究区20 a实际蒸散量时空变化趋势图

    Figure  6.  Trend of the actual evapotranspiration over the period of 20 years

    图  7  气温与蒸散量和降水与蒸散量的偏相关性检验空间分布图

    Figure  7.  Spatial distribution plots for the partial correlation between air temperature and evapotranspiration (a) and for the partial correlation between precipitation and evapotranspiration (b)

    图  8  研究区植被指数与蒸散量的 Pearson相关系数空间分布图

    Figure  8.  Spatial distribution of Pearson correlation coefficients of vegetation index and evapotranspiration in the study area

    表  1  3个野外蒸发试验日蒸散发结果统计

    Table  1.   Statistics of daily evapotranspiration results of three field evaporation tests

    地点A筒B筒平均值/mm反演值/mm误差/mm相对误差/%
    最大值/mm最小值/mm最大值/mm最小值/mm
    王家楼5.641.644.521.352.702.40.3011.11
    石庄屯4.560.993.990.922.082.20.125.77
    姚家庄5.531.214.461.122.862.50.3612.59
    下载: 导出CSV

    表  2  研究区蒸散量变化趋势分类标准

    Table  2.   Classification criteria for the trend of evapotranspiration in the study area

    类型|Z|>1.96|Z|≤1.96
    β>10显著增长轻微增长
    0≤β≤10基本不变
    β<0显著降低轻微降低
    下载: 导出CSV

    表  3  研究区蒸散发空间变化趋势面积统计

    Table  3.   Area statistics of evapotranspiration spatial change trend in the study area

    类别面积/km2占比/%
    显著降低842.911.11
    轻微降低13991.3618.35
    基本稳定57498.8175.41
    轻微增长7.360.01
    显著增长3901.955.12
    下载: 导出CSV

    表  4  张承地区2000—2020年不同土地利用类型的面积以及年均蒸散量统计

    Table  4.   Area statistics of different land use types from 2000 to 2020 and average annual evapotranspiration statistics of different land use types in the ZhangCheng area

    地类土地利用类型的统计面积/ km²变化量/km²年均蒸散量/mm
    2000年2005年2010年2015年2020年
    耕地25729.525776.225143.925091.224734.7−994.8395.8
    林地26612.126623.026992.326938.126935.3323.2554.5
    草地20389.420312.520060.419941.219983.5−405.9483.2
    水体1099.71071.2952.1963.81046.2−53.5488.3
    建筑用地1118.81160.42180.32392.82641.21522.4356.4
    未利用地1327.41335.0949.5950.2935.9−391.5253.3
    下载: 导出CSV
  • [1] PENMAN Howard Latimer. Natural evaporation from open water,bare soil and grass[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences,1948,193(1032):120 − 145.
    [2] SEGUIN B,ITIER B. Using midday surface temperature to estimate daily evaporation from satellite thermal IR data[J]. International Journal of Remote Sensing,1983,4(2):371 − 383. doi:  10.1080/01431168308948554
    [3] 高彦春,龙笛. 遥感蒸散发模型研究进展[J]. 遥感学报,2008,12(3):515 − 528. [GAO Yanchun,LONG Di. Progress in models for evapotranspiration estimation using remotely sensed data[J]. Journal of Remote Sensing,2008,12(3):515 − 528. (in Chinese with English abstract) doi:  10.11834/jrs.20080369
    [4] 尹剑,欧照凡,付强,等. 区域尺度蒸散发遥感估算:反演与数据同化研究进展[J]. 地理科学,2018,38(3):448 − 456. [YIN Jian,OU Zhaofan,FU Qiang,et al. Review of current methodologies for regional evapotranspiration estimation:Inversion and data assimilation[J]. Scientia Geographica Sinica,2018,38(3):448 − 456. (in Chinese with English abstract)
    [5] SU Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes[J]. Hydrology and Earth System Sciences,2002,6(1):85 − 100. doi:  10.5194/hess-6-85-2002
    [6] SU Z. Remote sensing of land use and vegetation for mesoscale hydrological studies[J]. International Journal of Remote Sensing,2000,21(2):213 − 233. doi:  10.1080/014311600210803
    [7] 郑倩倩,代鹏超,张金燕,等. 基于SEBS模型的精河流域蒸散发研究[J]. 干旱区研究,2020,37(6):1378 − 1387. [ZHENG Qianqian,DAI Pengchao,ZHANG Jinyan,et al. Evapotranspiration in the Jinghe River Basin based on the surface energy balance system[J]. Arid Zone Research,2020,37(6):1378 − 1387. (in Chinese with English abstract) doi:  10.13866/j.azr.2020.06.02
    [8] 朱晓倩,金晓媚,张绪财,等. 格尔木河流域山前平原区蒸散量的分布特征[J]. 水文地质工程地质,2019,46(5):55 − 64. [ZHU Xiaoqian,JIN Xiaomei,ZHANG Xucai,et al. Distribution characteristics of evapotranspiration in the valley piedmont plain of the Golmud River Basin[J]. Hydrogeology & Engineering Geology,2019,46(5):55 − 64. (in Chinese with English abstract)
    [9] 薛阳,金晓媚,朱晓倩. 宁夏沿黄经济区蒸散量变化特征及水均衡方法验证[J]. 水文地质工程地质,2017,44(3):27 − 32. [XUE Yang,JIN Xiaomei,ZHU Xiaoqian. Variation of evapotranspiration of Ningxia Yellow River economic zone and the validation using water budget method[J]. Hydrogeology & Engineering Geology,2017,44(3):27 − 32. (in Chinese with English abstract)
    [10] 金晓媚,万力,梁继运. 水均衡法验证蒸散量计算的可靠性:以张掖盆地为例[J]. 现代地质,2008,22(2):299 − 303. [JIN Xiaomei,WAN Li,LIANG Jiyun. Accuracy verification of evapotranspiration result using hydrological budget method—A case study of the Zhangye Basin[J]. Geoscience,2008,22(2):299 − 303. (in Chinese with English abstract) doi:  10.3969/j.issn.1000-8527.2008.02.018
    [11] 张圆,贾贞贞,刘绍民,等. 遥感估算地表蒸散发真实性检验研究进展[J]. 遥感学报,2020,24(8):975 − 999. [ZHANG Yuan,JIA Zhenzhen,LIU Shaomin,et al. Advances in validation of remotely sensed land surface evapotranspiration[J]. Journal of Remote Sensing,2020,24(8):975 − 999. (in Chinese with English abstract)
    [12] 于占江. 气候变化对京津冀水资源的影响及对策[D]. 南京: 南京信息工程大学, 2019

    YU Zhanjiang. Impacts of climate change on water resources in jing-Jin-ji region and countermeasures[D]. Nanjing: Nanjing University of Information Science & Technology, 2019. (in Chinese with English abstract)
    [13] 石嘉丽,张晓龙,李红军,等. 河北坝上地区绿水时空变化及其驱动因素研究[J]. 中国生态农业学报(中英文),2021,29(6):1030 − 1041. [SHI Jiali,ZHANG Xiaolong,LI Hongjun,et al. Spatial-temporal changes in green water and its driving factors in the Bashang area of Hebei Province[J]. Chinese Journal of Eco-Agriculture,2021,29(6):1030 − 1041. (in Chinese with English abstract)
    [14] 王佃来,刘文萍,黄心渊. 基于Sen+Mann-Kendall的北京植被变化趋势分析[J]. 计算机工程与应用,2013,49(5):13 − 17. [WANG Dianlai,LIU Wenping,HUANG Xinyuan. Trend analysis in vegetation cover in Beijing based on Sen+Mann-Kendall method[J]. Computer Engineering and Applications,2013,49(5):13 − 17. (in Chinese with English abstract) doi:  10.3778/j.issn.1002-8331.1206-0282
    [15] HELSEL Dennis R,FRANS Lonna M. Regional Kendall test for trend[J]. Environmental Science & Technology,2006,40(13):4066 − 4073.
    [16] LIBISELLER Claudia,GRIMVALL Anders. Performance of partial Mann-Kendall tests for trend detection in the presence of covariates[J]. Environmetrics,2002,13(1):71 − 84. doi:  10.1002/env.507
    [17] YUE Sheng,PILON Paul,PHINNEY Bob,et al. The influence of autocorrelation on the ability to detect trend in hydrological series[J]. Hydrological Processes,2002,16(9):1807 − 1829. doi:  10.1002/hyp.1095
    [18] 严丽坤. 相关系数与偏相关系数在相关分析中的应用[J]. 云南财贸学院学报,2003,19(3):78 − 80. [YAN Likun. Application of correlation coefficient and biased correlation coefficient in related analysis[J]. Journal of Yunnan Finance and Trade Institute,2003,19(3):78 − 80. (in Chinese with English abstract)
    [19] 肖荣波,欧阳志云,李伟峰,等. 城市热岛的生态环境效应[J]. 生态学报,2005,25(8):2055 − 2060. [XIAO Rongbo,OUYANG Zhiyun,LI Weifeng,et al. A review of the eco-environmental consequences of urban heat Islands[J]. Acta Ecologica Sinica,2005,25(8):2055 − 2060. (in Chinese with English abstract) doi:  10.3321/j.issn:1000-0933.2005.08.032
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  174
  • HTML全文浏览量:  96
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-05
  • 修回日期:  2022-06-18
  • 网络出版日期:  2023-01-13
  • 刊出日期:  2023-01-13

目录

    /

    返回文章
    返回