ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • Scopus 收录期刊
  • 中国科技核心期刊
  • DOAJ 收录期刊
  • CSCD 收录期刊
  • 《WJCI 报告》收录期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

爆破扰动下TBM隧洞时滞型岩爆特征及影响机制研究

全永威 王军 熊永润 姚志宾 张宇 胡磊

全永威,王军,熊永润,等. 爆破扰动下TBM隧洞时滞型岩爆特征及影响机制研究[J]. 水文地质工程地质,2023,50(1): 94-103 doi:  10.16030/j.cnki.issn.1000-3665.202202042
引用本文: 全永威,王军,熊永润,等. 爆破扰动下TBM隧洞时滞型岩爆特征及影响机制研究[J]. 水文地质工程地质,2023,50(1): 94-103 doi:  10.16030/j.cnki.issn.1000-3665.202202042
QUAN Yongwei, WANG Jun, XIONG Yongrun, et al. A study of the characteristics and influence mechanism of time delayed rockburst in a TBM tunnel under the blasting disturbance[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 94-103 doi:  10.16030/j.cnki.issn.1000-3665.202202042
Citation: QUAN Yongwei, WANG Jun, XIONG Yongrun, et al. A study of the characteristics and influence mechanism of time delayed rockburst in a TBM tunnel under the blasting disturbance[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 94-103 doi:  10.16030/j.cnki.issn.1000-3665.202202042

爆破扰动下TBM隧洞时滞型岩爆特征及影响机制研究

doi: 10.16030/j.cnki.issn.1000-3665.202202042
详细信息
    作者简介:

    全永威(1980-),男,本科,高级工程师,主要从事水利工程建设管理方面的研究。E-mail:89219636@qq.com

    通讯作者:

    胡磊(1988-),男,博士,讲师,主要从事岩爆机理、监测、预警与防控方面的研究。E-mail:hulei@mail.neu.edu.cn

  • 中图分类号: U452.1+1;U459.6

A study of the characteristics and influence mechanism of time delayed rockburst in a TBM tunnel under the blasting disturbance

  • 摘要: 时滞型岩爆的发生通常具有很强的随机性,会对施工安全造成巨大的威胁,而开挖扰动、爆破扰动等均会对潜在时滞型岩爆区产生不同程度的影响。依托某隧道掘进机(TBM)引水隧洞,采用理论分析和对比分析法研究了拆机洞爆破开挖期间K54+000—K54+700段发生的5次时滞型岩爆,发现:(1)强烈岩爆和中等岩爆区位于缓倾断层附近,围岩发育短小隐节理和含充填的细密节理,轻微岩爆距断层远或位于正断层附近,除含充填的细密节理外,均至少发育1条含充填物的倾向SW的陡倾结构面;(2)TBM法开挖隧洞时滞型岩爆滞后爆破时间更长,滞后工作面距离更远,且爆破对TBM隧洞的扰动作用相对较小;(3)爆破扰动使得潜在时滞型岩爆区围岩失稳变得容易,从而加速了时滞型岩爆的进程。研究成果可为TBM隧洞时滞型岩爆的预警与防控提供参考。
  • 图  1  拆机洞纵断面图及横断面图

    Figure  1.  Vertical section and cross section of the machine removal tunnel

    图  2  地应力与隧洞的空间关系

    Figure  2.  Spatial relationship between in-situ stress and tunnel

    图  3  K54+000—K54+700段即时型岩爆分布示意图

    Figure  3.  Distribution diagram of the immediate rockburst in K54+000—K54+700 section

    图  4  K54+000—K54+700段地质展布图

    Figure  4.  Geological distribution of K54+000—K54+700 section

    图  5  K54+000—K54+700段围岩初期支护概况

    Figure  5.  Overview of the initial support of surrounding rock in K54+000—K54+700 section

    图  6  某引水隧洞时滞型岩爆分布示意图

    Figure  6.  Distribution diagram of t time delayed rockburst in a diversion tunnel

    图  7  时滞型岩爆断面分布情况

    Figure  7.  Section distribution of time deleyed rockburst

    图  8  岩爆区域内的结构面

    Figure  8.  Structural plane in rockburst area

    图  9  岩爆IV爆堆

    Figure  9.  Rockburst IV pile

    图  10  时滞型岩爆爆坑深度与爆坑中心前后各10 m范围内累计即时型岩爆爆坑深度的关系

    Figure  10.  Relationship between the depth of time delayed rockburst pit and the cumulative depth of immediate rockburst pit within 10 m in front of and behind the rockburst pit center

    图  11  不同等级时滞型岩爆地质力学模式示意图

    Figure  11.  Schematic diagram of geomechanical model of time deleyed rockburst of different grades

    表  1  时滞型岩爆发生信息统计

    Table  1.   Statistics of occurrence information of time delayed rockburst

    岩爆爆坑照片描述
    岩爆Ⅰ发生时间:2021年10月22日
    发生位置:K54+200—K54+213(距工作面769.0 m)
    岩爆等级:强烈岩爆
    爆坑形态:长条深窝型
    爆坑位置:10点钟—2点钟方位
    爆坑尺寸:13 m×6 m×1.2 m(长×宽×深)
    爆坑区域结构面:石英脉+多条灰白色钙质充填细脉
    岩爆前支护措施:随机砂浆锚杆&钢筋网片&混凝土喷层
    岩爆Ⅱ发生时间:2021年10月22日
    发生位置:K54+550—K54+551.2(距工作面430.8 m)
    岩爆等级:轻微岩爆
    爆坑形态:浅窝型
    爆坑位置:9点钟—10点钟方位
    爆坑尺寸:1.2 m×1.5 m×0.1 m(长×宽×深)
    爆坑区域结构面:1条厚0.2~0.4 m的白色钙膜及铁绣色斑充填结构面+多条含钙膜充填的细小节理
    岩爆前支护措施:混凝土喷层
    岩爆Ⅲ发生时间:2021年11月1日
    发生位置:K54+128—K54+131.5(距工作面850.5 m)
    岩爆等级:中等岩爆
    爆坑形态:深窝型
    爆坑位置:9点钟—10点钟方位
    爆坑尺寸:3.5 m×7.5 m ×0.5 m(长×宽×深)
    爆坑区域结构面:大量密集节理,呈共轭相交,伴有白色钙膜充填
    岩爆前支护措施:混凝土喷层
    岩爆Ⅳ发生时间:2021年11月2日
    发生位置:K54+640—K54+642(距工作面340.0 m)
    岩爆等级:轻微岩爆
    爆坑形态:浅窝型,结构面控制边界
    爆坑位置:2点半—4点钟方位
    爆坑尺寸:2.5 m×3.7 m×0.15 m(长×宽×深)
    爆坑区域结构面:1条含5~8 cm墨绿色充填结构面+细小节理集密,伴有钙膜充填
    岩爆前支护措施:混凝土喷层
    岩爆Ⅴ发生时间:2021年11月7日
    发生位置:K54+116—K54+119.5(距工作面862.5m)
    岩爆等级:轻微岩爆
    爆坑形态:V型
    爆坑位置:2点钟—3点半方位
    爆坑尺寸:3.5 m×2.5 m×0.2 m(长×宽×深)
    爆坑区域结构面:2条含充填结构面,厚2~10 cm
    岩爆前支护措施:混凝土喷层
    下载: 导出CSV

    表  2  时滞型岩爆滞后时间及空间信息

    Table  2.   Lag time and spatial information of time delayed rockburst

    岩爆滞后时间及空间岩爆Ⅰ岩爆Ⅱ岩爆Ⅲ岩爆Ⅳ岩爆Ⅴ
    岩爆滞后开挖的天数/d1058111088117
    岩爆滞后拆机洞第二次爆破的天数/d77171823
    岩爆滞后工作面的距离/m769.0430.8850.5340.0862.5
    下载: 导出CSV
  • [1] 冯夏庭, 陈炳瑞, 张传庆. 岩爆孕育过程的机制、预警与动态调控[M]. 北京: 科学出版社, 2013

    FENG Xiating, CHEN Bingrui, ZHANG Chuanqing. Mechanism, warning and dynamic control of rockburst development processes[M]. Beijing: Science Press, 2013. (in Chinese)
    [2] 刘威军,范俊奇,李天斌,等. 深埋高地应力隧道勘察期岩爆烈度概率分级预测[J]. 水文地质工程地质,2022,49(6):114 − 123. [LIU Weijun,FAN Junqi,LI Tianbin,et al. Probabilistic classification prediction of rockburst intensity in a deep buried high geo-stress rock tunnel during engineering investigation[J]. Hydrogeology & Engineering Geology,2022,49(6):114 − 123. (in Chinese with English abstract) doi:  10.16030/j.cnki.issn.1000-3665.202111027
    [3] 何怡帆,李天斌,曹海洋. 隧道施工期岩爆危险性评价的属性识别模型及工程应用[J]. 水文地质工程地质,2020,47(2):102 − 111. [HE Yifan,LI Tianbin,CAO Haiyang. Attribute recognition model of fatalness assessment of rockburst in tunnel construction and its application[J]. Hydrogeology & Engineering Geology,2020,47(2):102 − 111. (in Chinese with English abstract)
    [4] 潘雪峰,乔粉剑. 处于岩爆地层的隧道设计和施工方案研究[J]. 公路,2014,59(5):114 − 118. [PAN Xuefeng,QIAO Fenjian. Research on design and construction scheme for tunnel in rockfall stratum[J]. Highway,2014,59(5):114 − 118. (in Chinese with English abstract)
    [5] 冯夏庭,肖亚勋,丰光亮,等. 岩爆孕育过程研究[J]. 岩石力学与工程学报,2019,38(4):649 − 673. [FENG Xiating,XIAO Yaxun,FENG Guangliang,et al. Study on the development process of rockbursts[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(4):649 − 673. (in Chinese with English abstract)
    [6] 冯夏庭,陈炳瑞,明华军,等. 深埋隧洞岩爆孕育规律与机制:即时型岩爆[J]. 岩石力学与工程学报,2012,31(3):433 − 444. [FENG Xiating,CHEN Bingrui,MING Huajun,et al. Evolution law and mechanism of rockbursts in deep tunnels:Immediate rockburst[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(3):433 − 444. (in Chinese with English abstract)
    [7] 陈炳瑞,冯夏庭,明华军,等. 深埋隧洞岩爆孕育规律与机制:时滞型岩爆[J]. 岩石力学与工程学报,2012,31(3):561 − 569. [CHEN Bingrui,FENG Xiating,MING Huajun,et al. Evolution law and mechanism of rockburst in deep tunnel:Time delayed rockburst[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(3):561 − 569. (in Chinese with English abstract)
    [8] FENG Guangliang,FENG Xiating,XIAO Yaxun,et al. Characteristic microseismicity during the development process of intermittent rockburst in a deep railway tunnel[J]. International Journal of Rock Mechanics and Mining Sciences,2019,124:104135. doi:  10.1016/j.ijrmms.2019.104135
    [9] 杨艳霜,周辉,张传庆,等. 大理岩单轴压缩时滞性破坏的试验研究[J]. 岩土力学,2011,32(9):2714 − 2720. [YANG Yanshuang,ZHOU Hui,ZHANG Chuanqing,et al. Experimental investigation on time-lag failure properties of marble under uniaxial compressive test[J]. Rock and Soil Mechanics,2011,32(9):2714 − 2720. (in Chinese with English abstract)
    [10] 李夕兵,宫凤强. 基于动静组合加载力学试验的深部开采岩石力学研究进展与展望[J]. 煤炭学报,2021,46(3):846 − 866. [LI Xibing,GONG Fengqiang. Research progress and prospect of deep mining rock mechanics based on coupled static-dynamic loading testing[J]. Journal of China Coal Society,2021,46(3):846 − 866. (in Chinese with English abstract)
    [11] 宫凤强,陆道辉,李夕兵,等. 动力扰动下预静载硬岩断裂的增韧和减韧效应[J]. 岩石力学与工程学报,2014,33(9):1905 − 1915. [GONG Fengqiang,LU Daohui,LI Xibing,et al. Toughness increasing or decreasing effect of hard rock fracture with pre-static loading under dynamic disturbance[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(9):1905 − 1915. (in Chinese with English abstract)
    [12] 赵周能. 基于微震信息的深埋隧洞岩爆孕育成因研究[D]. 沈阳: 东北大学, 2014

    ZHAO Zhouneng. Studies on preparation causes of rockburst in deep tunnel based on microseismic information[D]. Shenyang: Northeastern University, 2014. (in Chinese with English abstract)
    [13] 何满潮,刘冬桥,宫伟力,等. 冲击岩爆试验系统研发及试验[J]. 岩石力学与工程学报,2014,33(9):1729 − 1739. [HE Manchao,LIU Dongqiao,GONG Weili,et al. Development of a testing system for impact rockbursts[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(9):1729 − 1739. (in Chinese with English abstract)
    [14] 苏国韶,胡李华,冯夏庭,等. 低频周期扰动荷载与静载联合作用下岩爆过程的真三轴试验研究[J]. 岩石力学与工程学报,2016,35(7):1309 − 1322. [SU Guoshao,HU Lihua,FENG Xiating,et al. True triaxial experimental study of rockburst process under low frequency cyclic disturbance load combined with static load[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(7):1309 − 1322. (in Chinese with English abstract)
    [15] ZHANG Shichao,MA Tianhui,TANG Chun’an,et al. Microseismic monitoring and experimental study on mechanism of delayed rockburst in deep-buried tunnels[J]. Rock Mechanics and Rock Engineering,2020,53(6):2771 − 2788. doi:  10.1007/s00603-020-02069-4
    [16] 赵周能,冯夏庭,肖亚勋,等. 不同开挖方式下深埋隧洞微震特性与岩爆风险分析[J]. 岩土工程学报,2016,38(5):867 − 876. [ZHAO Zhouneng,FENG Xiating,XIAO Yaxun,et al. Microseismic characteristics and rockburst risk of deep tunnel constructed by different excavation methods[J]. Chinese Journal of Geotechnical Engineering,2016,38(5):867 − 876. (in Chinese with English abstract)
    [17] 范勇, 卢文波, 王义昌, 等. 不同开挖方式下即时型和时滞型岩爆的孕育特征比较[J]. 岩石力学与工程学报, 2015, 34(增刊2): 3715 − 3723

    FAN Yong, LU Wenbo, WANG Yichang, et al. Comparison of evolution characteristics of immediate and time delayed rockbursts under different excavation methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Sup 2): 3715 − 3723. (in Chinese with English abstract)
    [18] 中华人民共和国住房和城乡建设部, 国家质量监督检验检疫总局. 水利水电工程地质勘察规范: GB 50487—2008[S]. 北京: 中国计划出版社, 2009

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Code for engineering geological invcstigation of water resources and hydropower: GB 50487—2008[S]. Beijing: China Planning Press, 2009. (in Chinese)
    [19] 谭以安. 岩爆形成机理研究[J]. 水文地质工程地质,1989,16(1):34 − 38. [TAN Yi’an. The mechanism research of rockburst[J]. Hydrogeology & Engineering Geology,1989,16(1):34 − 38. (in Chinese with English abstract)
    [20] 王庆武,巨能攀,杜玲丽,等. 深埋长大隧道岩爆预测与工程防治研究[J]. 水文地质工程地质,2016,43(6):88 − 94. [WANG Qingwu,JU Nengpan,DU Lingli,et al. Research on rockburst prediction and engineering measures of long and deep-lying tunnels[J]. Hydrogeology & Engineering Geology,2016,43(6):88 − 94. (in Chinese with English abstract)
    [21] 李天斌, 孟陆波, 王兰生. 高地应力隧道稳定性及岩爆、大变形灾害防治[M]. 北京: 科学出版社, 2016

    LI Tianbin, MENG Lubo, WANG Lansheng. Stability of high ground stress tunnel and prevention of rockburst and large deformation[M]. Beijing: Science Press, 2016. (in Chinese)
    [22] LI Tianbin,MA Chunchi,ZHU Minglei,et al. Geomechanical types and mechanical analyses of rockbursts[J]. Engineering Geology,2017,222:72 − 83. doi:  10.1016/j.enggeo.2017.03.011
    [23] 王孝健, 苏生瑞, 施怡, 等. 高地应力环境下地下工程围岩变形破坏的地质力学模式分析[J]. 公路,2014,59(4):244 − 250. [WANG Xiaojian, SU Shengrui, SHI Yi, et al. Mechanical model analysis of deformation and failure of surrounding rock of underground engineering under high geostress environment[J]. Highway,2014,59(4):244 − 250. (in Chinese with English abstract)
    [24] REZAEI NIYA S M,SELVADURAI A P S. Correlation of joint roughness coefficient and permeability of a fracture[J]. International Journal of Rock Mechanics and Mining Sciences,2019,113:150 − 162. doi:  10.1016/j.ijrmms.2018.12.008
    [25] 谢勇谋,李天斌. 爆破对岩爆产生作用的初步探讨[J]. 中国地质灾害与防治学报,2004,15(1):61 − 64. [XIE Yongmou,LI Tianbin. Primary discussion on blast’s affection on rockburst[J]. The Chinese Journal of Geological Hazard and Control,2004,15(1):61 − 64. (in Chinese with English abstract)
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  90
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-04
  • 录用日期:  2022-05-25
  • 修回日期:  2022-05-25
  • 网络出版日期:  2022-11-28
  • 刊出日期:  2023-01-13

目录

    /

    返回文章
    返回