ISSN 1000-3665 CN 11-2202/P
    易富,管茂成,李军,等. 稻壳灰-地聚物固化土力学特性及机理分析[J]. 水文地质工程地质,2022,49(2): 94-101. DOI: 10.16030/j.cnki.issn.1000-3665.202107021
    引用本文: 易富,管茂成,李军,等. 稻壳灰-地聚物固化土力学特性及机理分析[J]. 水文地质工程地质,2022,49(2): 94-101. DOI: 10.16030/j.cnki.issn.1000-3665.202107021
    YI Fu, GUAN Maocheng, LI Jun, et al. Mechanical properties and mechanism analyses of rice husk ash geopolymer solidified soil[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 94-101. DOI: 10.16030/j.cnki.issn.1000-3665.202107021
    Citation: YI Fu, GUAN Maocheng, LI Jun, et al. Mechanical properties and mechanism analyses of rice husk ash geopolymer solidified soil[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 94-101. DOI: 10.16030/j.cnki.issn.1000-3665.202107021

    稻壳灰-地聚物固化土力学特性及机理分析

    Mechanical properties and mechanism analyses of rice husk ash geopolymer solidified soil

    • 摘要: 为了研究绿色环保新型流态固化土在狭窄肥槽回填等工程问题中的应用,提出稻壳灰联合地聚物固化工程渣土形成流态稻壳灰-地聚物固化土。采用无侧限抗压强度(UCS)试验、X射线衍射(XRD)、扫描电子显微镜(SEM)和X射线能谱分析(EDS)等测试方法,研究稻壳灰的掺量与粒径对稻壳灰-地聚物固化土的无侧限抗压强度(UCS)的影响规律,并探讨了稻壳灰掺量与粒径对其微观结构影响规律。结果表明:稻壳灰-地聚物固化土的净浆流动度与稻壳灰的掺量、粒径呈负相关关系,其凝结时间与稻壳灰掺量呈正相关关系,但与稻壳灰的粒径呈负相关关系;稻壳灰-地聚物固化土UCS值随着稻壳灰的掺量增加、粒径降低而显著提高,当稻壳灰的掺量增加到10%后,强度提升效能降低,初步判定稻壳灰的最优掺量为10%;固化过程中产生水化硅铝酸钠(N-A-S-H)和水化硅酸钙(C-S-H)2种凝胶,起到填充内部孔隙和胶结土颗粒的作用,使整体结构趋于完整,是稻壳灰-地聚物固化土强度提升的根本原因。研究成果可为稻壳灰在流态固化土的工程应用提供理论依据。

       

      Abstract: In order to study the application of the green environmental protection fluid solidified soil in engineering problems such as backfilling of a narrow fertilizer tank, the rice husk ash and geopolymer solidified engineering residue forming the fluid rice husk ash geopolymer solidified soil is proposed. The effects of the content and particle size of the rice husk ash on the unconfined compressive strength (UCS) of the rice husk ash geopolymer stabilized soil are examined by using the test methods of the unconfined compressive strength (UCS), X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray energy spectrum analysis (EDS), and the effects of the content and particle size of the rice husk ash on the microstructure of the soil are discussed. The results show that the net pulp fluidity of the rice husk ash geopolymer solidified soil is negatively correlated with the content and particle size of the rice husk ash, and the setting time is positively correlated with the content of the rice husk ash, but is negatively correlated with the particle size of the rice husk ash. The UCS value of the rice husk ash geopolymer stabilized soil increases significantly with the increase of the content of the rice husk ash and with the decrease of the particle size. When the content of the rice husk ash increases to 10%, the strength improvement efficiency decreases, and the optimal content of the rice husk ash is 10%. During the curing process, two kinds of gels, namely hydrated sodium aluminosilicate (N-A-S-H) and hydrated calcium silicate (C-S-H), play the role of filling the internal pores and cemented soil particles, so that the whole structure tends to be complete, which is the fundamental reason for the strength improvement of the rice husk ash geopolymer stabilized soil. The research results can provide a theoretical basis for the engineering application of the rice husk ash in fluid solidified soils.

       

    /

    返回文章
    返回