[1]李明威,唐川,陈明,等.汶川震区北川县泥石流流域崩滑体时空演变特征[J].水文地质工程地质,2020,47(3):182-190.[doi:10.16030/j.cnki.issn.1000 -3665.201909006]
 LI Mingwei,TANG Chuan,CHEN Ming,et al.Spatio -temporal evolution characteristics of landslides in debris flow catchment in Beichuan County in the Wenchuan earthquake zone[J].Hydrogeology & Engineering Geology,2020,47(3):182-190.[doi:10.16030/j.cnki.issn.1000 -3665.201909006]
点击复制

汶川震区北川县泥石流流域崩滑体时空演变特征()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
47卷
期数:
2020年3期
页码:
182-190
栏目:
环 境 地 质
出版日期:
2020-05-15

文章信息/Info

Title:
Spatio -temporal evolution characteristics of landslides in debris flow catchment in Beichuan County in the Wenchuan earthquake zone
文章编号:
1000 -3665(2020)03 -0182 -09
作者:
李明威唐川陈明史青云
成都理工大学地质灾害防治与地质环境保护国家重点实验室,四川 成都610059
Author(s):
LI Mingwei TANG Chuan CHEN Ming SHI Qingyun
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, Sichuan610059,China
关键词:
遥感崩滑体时空演变泥石流植被恢复汶川震区
Keywords:
remote sensing landslides spatio -temporal evolution debris flow vegetation recovery Wenchuan earthquake area
分类号:
P642.22;P642.21
DOI:
10.16030/j.cnki.issn.1000 -3665.201909006
摘要:
2008年5月12日的汶川大地震引发了大规模同震山体滑坡,随后的强降雨又引发新的山体滑坡,滑坡形成的松散固体物质成为后续泥石流灾害的主要物质来源。为探究强震区泥石流流域崩滑体时空演变特征,文章以北川县魏家沟等8条泥石流流域为例,选取8期遥感影像(2008年震后、“9.24”泥石流发生后、2010年、2011年、2013年、2014年、2015年、2016年),分别解译崩滑体,统计其空间分布特征。此外,利用归一化植被指数(NDVI)计算研究区内植被覆盖度(VFC)及植被覆盖度恢复率(VCRR)。结果表明:研究区内崩滑体发育面积在强降雨作用后达到峰值,随后呈稳定恢复状态,面积逐年减小。崩滑体在高程900~1 100 m范围、坡度30°~45°范围、坡向90°~135°范围、距沟道150 m范围内发育面积最大。流域内植被覆盖度在2008年“9.24”泥石流灾害后最低,随后呈稳定恢复。自震后到2010年的时期内,植被覆盖度恢复率中等以下区域较多,植被恢复程度较低。2011年之后,流域内大多区域处于植被覆盖度恢复率中等以上等级,植被恢复程度较高。到2016年,研究区植被覆盖度已恢复至较高水平。研究表明:除地层岩性、微地貌等因素影响外,植被对泥石流活动性具有一定的抑制作用。
Abstract:
The Wenchuan Earthquake on May 12, 2008 triggered a large -scale co -seismic landslide, and the subsequent heavy rainfall prompted the formation of a new landslide. These loose solid materials became the main material source for subsequent debris flow disasters, which seriously threaten people’s lives and property security. In order to explore the spatio -temporal evolution characteristics of the landslide in the debris flow catchment in the strong earthquake area, this paper takes the eight catchments dominated by the Weijiagou in Beichuan County as an example, and selects eight remote sensing images (after the earthquake in 2008, after the “9.24”debris flow, and in 2010, 2011, 2013, 2014, 2015 and 2016), to respectively interpret the landslides, and calculate their spatial distribution characteristics. We also calculated the vegetation coverage (VFC) and vegetation coverage recovery rate (VCRR) in the study area using the normalized vegetation index (NDVI). The research results show that the development area of the landslide in the study area reaches a peak after the heavy rainfall, and then it returns to a stable state, and the area decreases year by year. The collapse body has the largest development area in the range of 900-1 100 m in elevation, 30°-45° in slope, 90°-135° in the slope direction and 150 m in the channel. The vegetation coverage in the catchment was the lowest after the “9.24”debris flow disaster, and then recovered stably. In the period from the earthquake to 2010, the vegetation coverage recovery rate is more than moderate, and the vegetation restoration degree was low. After 2011, most areas in the catchments were at a medium or higher level of vegetation coverage recovery rate, and the degree of vegetation restoration was higher. By 2016, the vegetation coverage of the study area has returned to a high level of 0.86.This study also shows that vegetation has a certain inhibitory effect on debris flow activity.

参考文献/References:

[1]刘传正,温铭生,刘艳辉,等.汶川地震区地质灾害成生规律研究[J].水文地质工程地质,2016,43(5):1-16.
[LIU C Z,WEN M S,LIU Y H, et al. Regional assessment on geological disasters in “5.12”Wenchuan seismic area China[J]. Hydrogeology & Engineering Geology,2016,43(5):1-16.(in Chinese)]
[2]温铭生,刘传正,刘艳辉, 等.汶川地震高烈度区崩滑流灾害区域预警[J].中国地质灾害与防治学报,2019,30(1):10-19.
[WEN M S, LIU C Z, LIU Y H, et al. Regional warning of geological hazards in high seismic intensity area of Wenchuan Earthquake[J].The Chinese Journal of Geological Hazard and Control, 2019,30(1):10-19.(in Chinese)]
[3]武新宁,易俊梅,周淑丽, 等.尼泊尔Ms 8.1级地震活动构造及次生地质灾害研究[J].水文地质工程地质,2017,44(4):137-144.
[WU X N,YI J M ZHOU S L, et al. A study on the active faults structures and geohazards triggered by the Ms 8.1 Earthquake in Nepal[J]. Hydrogeology & Engineering Geology,2017,44(4):137-144.(in Chinese)]
[4]CHENG J D, HUANG Y C, WU H L, et al. Hydrometeorological and landuse attributes of debris flows and debris floods during typhoon Toraji, July 29 -30, 2001 in central Taiwan[J]. Journal of Hydrology, 2005,306(1/4):161-173.
[5]LIN C W, SHIEH C L, YUAN B D, et al. Impact of Chi -Chi earthquake on the occurrence of landslides and debris flows: example from the Chenyulan River watershed, Nantou, Taiwan[J]. Engineering Geology, 2004,71(1/2):49-61.
[6]黄润秋, 李为乐. “5.12”汶川大地震触发地质灾害的发育分布规律研究[J]. 岩石力学与工程学报, 2008, 27(12):2585-2592.
[ HUANG R Q,LI W L. Research on developmental and distribution rules of geohazards induced by Wenchuan earthquake on 12th May, 2018[J]. Chinese Journal of Rock Mechanics and Engineering, 2008,27(12): 2585-2592.(in Chinese)]
[7]唐川, 丁军, 梁京涛. 汶川震区北川县城泥石流源地特征的遥感动态分析[J]. 工程地质学报, 2010,18(1): 1-7.
[TANG C,DING J,LIANG J T. Remote sensing image based observational analysis on characters of debris flow source areas in Beichuan county of Wenchuan earthquake epicenter region[J].Journal of Engineering Geology, 2010,18(1):1-7.(in Chinese)]
[8]许强. 四川省8·13特大泥石流灾害特点、成因与启示[J]. 工程地质学报, 2010,18(5):596-608.
[XU Q. The 13 August 2010 catastrophic debris flows in Sichuan province: characteristics, genetic mechanism and suggestion[J]. Journal of Engineering Geology, 2010, 18(5):596-608.(in Chinese)]
[9]TANG C, ZHU J, DING J, et al. Catastrophic debris flows triggered by a 14 August 2010 rainfall at the epicenter of the Wenchuan earthquake[J]. Landslides, 2011,8(4): 485-497.
[10]倪化勇, 郑万模, 唐业旗, 等. 绵竹清平8·13群发泥石流成因、特征与发展趋势[J]. 水文地质工程地质, 2011,38(3):129-133.
[ NI H Y, ZHENG W M, TANG Y Q, et al. The genesis, characteristics and development trend of debris flow in Mianzhu Qingping 8·13[J]. Hydrogeology & Engineering Geology, 2011,38(3): 129-133.(in Chinese)]
[11]马煜, 余斌, 李彩侠, 等. 汶川强震区群发性泥石流特征研究——以四川省都江堰龙池“8·13”群发泥石流为例[J]. 灾害学, 2014,29(3):218-223.
[MA Y,YU B,LI C X, et al. Research on the characteristics of group debris flow hazards after the Wenchuan earthquake: A case study in the Longchi area of Dujiangyan, Sichuan,China[J]. Journal of Catastrophology, 2014, 29(3): 218-223.(in Chinese)]
[12]龚柯, 杨涛, 夏晨皓, 等. 基于FLO -2D的泥石流危险性评价 ——以四川省汶川县绵虒镇簇头沟为例[J]. 水资源与水工程学报, 2017,28(6):134-138.
[GONG K, YANG T,XIA C H, et al. Assessment on the hazard of debris flow based on FLO -2D:A case study of debris flow in Cutou Gully, Wenchuan, Sichuan[J]. Journal of Water Resources and Water Engineering, 2017,28(6):134-138.(in Chinese)]
[13]曹晨, 余斌, 马二龙, 等. 四川汶川县佛堂坝沟“7·10”泥石流调查研究[J]. 泥沙研究, 2019,44(1):38-43.
[ CAO C, YU B, MA E L, et al. Study on debris flow in Fongtuba Gully after the earthquake at Wenchuan County of Sichuan Province[J]. Journal of Sediment Research, 2019, 44(1): 38-43.(in Chinese)]
[14]YIN Y P, WANG F W, SUN P. Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China[J]. Landslides, 2009,6(2):139-152.
[15]TANG C, ZHU J, LIANG J T. Emergency assessment of seismic landslide susceptibility: a case study of the 2008 Wenchuan earthquake affected area[J]. Earthquake Engineering and Engineering Vibration, 2009,8(2):207-217.
[16]DAI F C, XU C, YAO X, et al. Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China[J]. Journal of Asian Earth Sciences, 2011,40(4):883-895.
[17]常鸣, 唐川, 蒋志林, 等. 强震区都江堰市龙池镇泥石流物源的遥感动态演变[J]. 山地学报, 2014,32(1): 89-97.
[CHANG M,TANG C,JIANG Z L, et al. Dynamic evolution process sediment supply for debris flow occurrence in Longchi of Dujiangyan, Wenchuan earthquake area[J].Mountain Research, 2014,32(1):89-97.(in Chinese)]
[18]TANG C, ZHU J, QI X, et al. Landslides induced by the Wenchuan earthquake and the subsequent strong rainfall event: A case study in the Beichuan area of China[J]. Engineering Geology, 2011,122(1/2):22-33.
[19]黄润秋. 汶川地震地质灾害后效应分析[J]. 工程地质学报, 2011,19(2):145-151.
[HUANG R Q. After effect of geohazards induced by the Wenchuan earthquake[J]. Journal of Engineering Geology, 2011,19(2):145-151.(in Chinese)]
[20]TANG C, VAN WESTEN C J, TANYAS H, et al. Analysing post -earthquake landslide activity using multi -temporal landslide inventories near the epicentral area of the 2008 Wenchuan earthquake[J]. Natural Hazards and Earth System Sciences, 2016,16(12): 2641-2655.
[21]许积层, 卢涛, 石福孙, 等. 基于NDVI监测5.12震后岷江河谷映秀汶川段滑坡体植被恢复[J]. 植物研究, 2012,32(6):750-755.
[XU J C,LU T, SHI F S, et al. Monitoring the vegetation recovery at landslides along the Minjiang river valley after 5.12 earthquake using NDVI:a case study of the Yingxiu -Wenchuan Section[J].Bulletin of Botanical Research, 2012,32(6): 750-755.(in Chinese)]
[22]李京忠, 曹明明, 邱海军, 等. 汶川地震区灾后植被恢复时空过程及特征——以都江堰龙溪河流域为例[J]. 应用生态学报, 2016,27(11):3479-3486.
[LI J Z, CAO M M,QIU H J, et al. Spatial -temporal process and characteristics of vegetation recovery after Wenchuan earthquake: A case study in Longxi River basin of Dujiangyan,China[J].Chinese Journal of Applied Ecology, 2016,27(11):3479-3486.(in Chinese)]
[23]唐川,铁永波.汶川震区北川县城魏家沟暴雨泥石流灾害调查分析[J]. 山地学报, 2009,27(5): 625-630.
[TANG C,TIE Y B. Reconnaissance and analysis on the rainstorm induced debris flow in Weijiagou valley of Beichuan City after the Wenchuan Earthquake[J]. Journal of mountain science, 2009, 27(5): 625-630.(in Chinese)]
[24]李苗苗. 植被覆盖度的遥感估算方法研究[D].北京:中国科学院遥感应用研究所,2003.
[LI M M. The method of vegetation fraction estimation by remote sensing[D].Beijing:Institute of Remote Sensing Applications, Chinese Academy of Sciences, 2003.(in Chinese)]
[25]常鸣, 唐川, 李为乐, 等. 汶川地震区绵远河流域泥石流形成区的崩塌滑坡特征[J]. 山地学报, 2012, 30(5):561-569.
[CHANG M, TANG C,LI W L, et al. The characteristic of collapse and landslide by Wenchuan earthquake in debris flow for mative region along the Mianyuan River Basin, China[J]. Journal of Mountain Science, 2012,30(5):561-569.(in Chinese)]
[26]杨涛. 岷江中下游典型区泥石流物源演化及敏感性评价研究——以汶川县绵虎镇区域为例[D]. 成都:成都理工大学, 2018.
[YANG T. Debris flow source evolution and sensitivity assessment in typical areas of the middle and lower reaches of Minjiang River: a case study of Miansi Town, Wenchuan County[D].Chengdu:Chengdu University of Technology,2018.(in Chinese)]

相似文献/References:

[1]谢谟文,刘翔宇,王增福,等.基于三维遥感系统的泥石流土石量计算及影响范围模拟[J].水文地质工程地质,2011,38(3):115.
 XIE Mo-wen,LIU Xiang-yu,WANG Zeng-fu,et al.A 3-D remote sensing system based on assessment of debris flow and impact area simulation[J].Hydrogeology & Engineering Geology,2011,38(3):115.
[2]张艳玲,南征兵,周平根. 利用证据权法实现滑坡易发性区划[J].水文地质工程地质,2012,39(2):121.
 ZHANG Yan-ling,NAN Zheng-bing,ZHOU Ping-gen. Division of landslide susceptibility based on weights of evidence model[J].Hydrogeology & Engineering Geology,2012,39(3):121.
[3]黄波林,殷跃平,陈小婷,等.地质灾害涌浪研究综述[J].水文地质工程地质,2014,41(1):112.
 [J].Hydrogeology & Engineering Geology,2014,41(3):112.
[4]许颢砾,王大庆,邓正栋,等.某岛屿GF-1-RS浅层地下水富集性评估[J].水文地质工程地质,2018,45(06):42.[doi:10.16030/j.cnki.issn.1000-3665.2018.06.07]
 XU Haoli,WANG Daqing,DENG Zhengdong,et al.Assessment of shallow groundwater potential in the island based on GF-1 and DEM data by remote sensing[J].Hydrogeology & Engineering Geology,2018,45(3):42.[doi:10.16030/j.cnki.issn.1000-3665.2018.06.07]
[5]高波,张佳佳,王军朝,等.西藏天摩沟泥石流形成机制与成灾特征[J].水文地质工程地质,2019,46(05):144.[doi:10.16030/j.cnki.issn.1000-3665.2019.05.19]
 GAO Bo,ZHANG Jiajia,WANG Junchao,et al.Formation mechanism and disaster characteristics of debris flow in the Tianmo gully in Tibet[J].Hydrogeology & Engineering Geology,2019,46(3):144.[doi:10.16030/j.cnki.issn.1000-3665.2019.05.19]

备注/Memo

备注/Memo:
收稿日期: 2019 -09 -02; 修订日期: 2019 -11 -01
基金项目: 国家重点研发计划项目(2017YFC1501004);国家自然科学基金项目(41672299)
第一作者: 李明威(1996 -),女,硕士研究生,主要从事工程地质与地质灾害防治研究。E -mail: 626714824@qq.com
通讯作者: 唐川(1961 -),男,博士生导师,教授,主要从事地质灾害、环境地质等方面教学与研究工作。E -mail: tangc@cdut.edu.cn
更新日期/Last Update: 2020-05-15