[1]姚佳明,姚鑫,陈剑,等.基于InSAR技术的缓倾煤层开采诱发顺层岩体地表变形模式研究[J].水文地质工程地质,2020,47(3):135-146.[doi:10.16030/j.cnki.issn.1000 -3665.201903072]
 YAO Jiaming,YAO Xin,CHEN Jian,et al.A study of deformation mode and formation mechanism of abedding landslide induced by mining of gently inclined coal seam based on InSAR technology[J].Hydrogeology & Engineering Geology,2020,47(3):135-146.[doi:10.16030/j.cnki.issn.1000 -3665.201903072]
点击复制

基于InSAR技术的缓倾煤层开采诱发顺层岩体地表变形模式研究()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
47卷
期数:
2020年3期
页码:
135-146
栏目:
环 境 地 质
出版日期:
2020-05-15

文章信息/Info

Title:
A study of deformation mode and formation mechanism of abedding landslide induced by mining of gently inclined coal seam based on InSAR technology
文章编号:
1000 -3665(2020)03 -0135 -12
作者:
姚佳明12姚鑫1陈剑2李凌婧1任开瑀1刘星洪1
1.活动构造与地壳稳定性评价重点实验室/中国地质科学院地质力学研究所,北京100081;2.中国地质大学(北京)工程技术学院,北京100083
Author(s):
YAO Jiaming12 YAO Xin1 CHEN Jian2 LI Lingjing1 REN Kaiyu1 LIU Xinghong1
1.Key Laboratory for Evaluation of Active Tectonics and Crustal Stability/Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing100081, China; 2.College of Engineering and Technology, China University of Geosciences (Beijing), Beijing100083, China
关键词:
地质灾害采空塌陷合成孔径雷达干涉测量法三维变形缓倾煤层地表沉降
Keywords:
geological hazard mined -out collapse InSAR 3D deformation gently inclined coal surface subsidence
分类号:
P642.26
DOI:
10.16030/j.cnki.issn.1000 -3665.201903072
摘要:
贵州贞丰县某煤矿开采煤层以向斜缓倾的三叠系上统火把冲组(T3h)为主,与贵州省大部分煤矿开采的背斜反倾煤层不同,其采矿活动诱发的地面沉降和滑坡风险亦表现出不同的变形破坏模式(背斜反倾煤层易诱发倾倒崩塌、顺层缓倾煤层易诱发地面塌陷与滑坡)。论文利用升、降轨观测的共15期3 m空间分辨率L波段PALSAR -2 SAR为数据源,开展了多期地表变形D -InSAR测量,确定出变形发生的位置、范围与滞后时间。经实地调查验证,InSAR解算结果较好地吻合了矿区开采范围和地表破坏情况,证实了InSAR在煤矿区识别时序性地表形变的准确性。进而分解计算了地表三维变形,并通过与地下开采范围和过程的相关性分析,深化了对该地区缓倾煤层地下开采诱发的顺层滑坡变形模式的认识:(1)InSAR可以识别计算出采矿区地表变形的范围与沉降量,矿区变形在干涉影像中表现为以采空区地表为中心向四周扩散的圆环状变形条纹;(2)地表变形区域覆盖地下采空区上方及附近地表区域,根据地表变形情况与地下采空区范围计算出该地区上山边界角约70°、下山边界角约58°;(3)地下采空与地表沉降变形存在约30 d的时间滞后;(4)顺层地下采空引发的地表水平移动方向受地层产状、地表坡向共同作用,水平向为沿层面的顺层滑移与向沉降中心汇聚的合成运动结果;(5)沿层面的顺层滑移与地表坡度因素叠加造成采空区地表上山侧岩石受拉产生拉裂缝,下山侧则易产生塌陷坑及裂缝。
Abstract:
The coal seam of a coal mine in Zhenfeng county in Guizhou Province is dominated by the synclinal gently dipping Upper Triassic Torch Group (T3h), which is different from the anticlinal gently dipping coal seam of the most coal mines in Guizhou. The ground subsidence and landslide risks induced by mining activities also show different deformation and failure modes. In this paper, PALSAR -2 SAR with a total spatial resolution of 3 m and L -band in 15 periods of orbit ascending and descending observations is used as the data source to carry out D -InSAR measurements of surface deformation in multiple periods, and the location, range and lag time of deformation are determined. Through field investigation and verification, the InSAR calculation results are well consistent with the mining area and the surface damage situation, confirming the accuracy of InSAR in identifying temporal surface deformation in the coal mine area. Furthermore, the 3D surface deformation is decomposed and calculated, and the correlation analysis with the underground mining scope and process deepens the understanding of the bedding landslide deformation mode and formation mechanism induced by the underground mining of gently inclined coal seam in this area. The results show that (1) InSAR can identify and calculate the surface deformation range and settlement of the mining area, and the deformation of the mining area is shown in the interference image as a circular ring deformation fringe with the surface of the goaf as the center and spreading around. (2) The surface deformation area covered the region above the underground mined -out area and areas near the surface, and according to the scope of the surface deformation condition and underground mined -out area in the region the mountain border angle is calculated as about 70°, and the mountain border angle, about 58°. (3) There is a time lag of about 30 d between the underground mining and surface subsidence deformation. (4) The horizontal movement direction of the surface caused by underground mining in bedding strata is affected by the occurrence of strata and the direction of surface slope, and the horizontal direction is the resultant movement result of bedding slip along the bedding strata and convergence to the settlement center. (5) The overlying bedding slip along the plane and surface slope factors results in the tension fracture of the rock on the surface of the goaf on the uphill side, while the subsidence pit and fracture are not easy to occur on the downhill side.

参考文献/References:

[1]SCHMIDT D A, BURGMANN R, NADEAU R M, et al. Distribution of aseismic slip rate on the Hayward fault inferred from seismic and geodetic data[J]. Journal of Geophysical Research -Solid Earth, 2005, 110(B8): B08406.
[2]BEAVAN J, SAMSONOV S, DENYS P, et al. Oblique slip on the Puysegur subduction interface in the 2009 July MW 7.8 Dusky Sound earthquake from GPS and InSAR observations: implications for the tectonics of southwestern New Zealand[J]. Geophysical Journal International, 2010, 183(3): 1265-1286.
[3]CHEN F L, LIN H, LI Z, et al. Interaction between permafrost and infrastructure along the Qinghai -Tibet Railway detected via jointly analysis of C -and L -band small baseline SAR interferometry[J]. Remote Sensing of Environment, 2012, 123: 532-540.
[4]RAUCOULES D, MAISONS C, CAMEC C, et al. Monitoring of slow ground deformation by ERS radar interferometry on the Vauvert salt mine (France) -Comparison with ground -based measurement[J]. Remote Sensing of Environment, 2003, 88(4): 468-478.
[5]STROZZI T, DELALOYE R, POFFET D, et al. Surface subsidence and uplift above a headrace tunnel in metamorphic basement rocks of the Swiss Alps as detected by satellite SAR interferometry[J]. Remote Sensing of Environment, 2011, 115(6): 1353-1360.
[6]JIANG L M, LIN H, MA J W, et al. Potential of small -baseline SAR interferometry for monitoring land subsidence related to underground coal fires: Wuda (Northern China) case study[J]. Remote Sensing of Environment, 2011, 115(2): 257-268.
[7]ZHAO C Y, LU Z, ZHANG Q, et al. Large -area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA[J]. Remote Sensing of Environment, 2012, 124: 348-359.
[8]MASSONNET D, FEIGL K L. Radar interferometry and its application to changes in the earth’s surface[J]. Reviews of Geophysics, 1998, 36(4): 441-500.
[9]AMELUNG F, YUN S H, WALTER T R, et al. Stress control of deep rift intrusion at Mauna Loa volcano, Hawaii[J]. Science, 2007, 316(5827): 1026-1030.
[10]ZEBKER H A, GOLDSTEIN R M. Topographic mapping from interferometric synthetic aperture radar observations[J]. Journal of Geophysical Research -Solid Earch and Plants, 1986, 91(B5): 4993-4999.
[11]GABRIEL A K, GOLDSTEIN R M, ZEBKER H A. Mapping small elevation changes over large areas -Differential Radar Interferometry[J]. Journal of Geophysical Research -Solid Earch and Plants, 1989, 94(B7): 9183-9191.
[12]FUJIWARA S, ROSEN P A, TOBITA M, et al. Crustal deformation measurements using repeat -pass JERS 1 synthetic aperture radar interferometry near the Izu Peninsula, Japan[J]. Journal of Geophysical Research -Solid Earth, 1998, 103(B2): 2411-2426.
[13]MASSONNET D, HOLZER T, VADON H. Land subsidence caused by the East Mesa geothermal filed, California, observed using SAR interferometry[J]. Geophysical Research Letters, 1997, 24(8): 901-904.
[14]BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383.
[15]USAI S. A least squares database approach for SAR interferometric data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(4): 753-760.
[16]陈玉兴, 江利明, 梁林林, 等. 基于Sentinel -1 SAR数据的黑河上游冻土形变时序InSAR监测[J]. 地球物理学报, 2019, 62(7): 2441-2454.
[CHEN Y X, JIANG L M, LIANG L L, et al. Monitoring permafrost deformation in the upstream Heihe River, Qilian Mountain by using multi -temporal Sentinel -1 InSAR dataset[J]. Chinese Journal of Geophysics, 2019, 62(7): 2441-2454.(in Chinese)]
[17]SAMSONOV S, VAN DER KOOIJ M, TIAMPO K. A simultaneous inversion for deformation rates and topographic errors of DInSAR data utilizing linear least square inversion technique[J]. Computers & Geosciences, 2011, 37(8): 1083-1091.
[18]WRIGHT T J, PARSONS B E, LU Z. Toward mapping surface deformation in three dimensions using InSAR[J]. Geophysical Research Letters, 2004, 31(1): L01607.
[19]吴立新, 高均海, 葛大庆, 等. 基于D -InSAR的煤矿区开采沉陷遥感监测技术分析[J]. 地理与地理信息科学, 2004, 20(2): 22-25.
[WU L X, GAO J H, GE D Q, et al. Technical analysis of the remote sensing monitoring for coal -mining subsidence based on D -InSAR[J]. Geography and Geo -Information Science, 2004, 20(2): 22-25.(in Chinese)]
[20]DU Y A, ZHANG L, FENG G C, et al. On the Accuracy of Topographic Residuals Retrieved by MTInSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2): 1053-1065.
[21]程滔, 单新建, 董文彤, 等. 利用InSAR技术研究黄土地区滑坡分布[J]. 水文地质工程地质, 2008, 35(1): 98-101.
[CHENG T, SHAN X J, DONG W T, et al. A study of landslide distribution in loess area with InSAR[J]. Hydrogeology & Engineering Geology, 2008, 35(1): 98-101.(in Chinese)]
[22]杜钊锋, 宫辉力, 王洒, 等. 短时空基线PS -InSAR在北京地面沉降监测中的应用[J]. 水文地质工程地质, 2012, 39(5): 116-120.
[DU Z F, GONG H L, WANG S, et al. Application of small spatio -temporal baseline PS -InSAR to the study of land subsidence in Beijing[J]. Hydrogeology & Engineering Geology, 2012, 39(5): 116-120.(in Chinese)]
[23]雷坤超, 陈蓓蓓, 宫辉力, 等. 基于PS -InSAR技术的天津地面沉降研究[J]. 水文地质工程地质, 2013, 40(6): 106-111.
[LEI K C, CHEN B B, GONG H L, et al. Detection of land subsidence in Tianjin based on PS -InSAR technology[J]. Hydrogeology & Engineering Geology, 2013, 40(6): 106-111.(in Chinese)]
[24]卢欣奇, 李学峰, 张勤斌, 等. 基于PS -InSAR技术的老采空区地表沉陷监测与分析[J]. 中国矿业, 2019, 28(4): 104-110.
[LU X Q, LI X F, ZHANG Q B, et al. Surface subsidence monitoring and analysis of old goaf based on the PS -InSAR technology[J]. China Mining Magazine, 2019, 28(4): 104-110.(in Chinese)]
[25]刘育平, 李晓莉, 张连猛. 矿山地质环境保护问题分析及对策研究——以贵州省为例[J]. 水文地质工程地质, 2010, 37(5): 137-138.
[LIU Y P, LI X L, ZHANG L M. Analysis and countermeasures of mine geological environment protection in Guizhou province[J]. Hydrogeology & Engineering Geology, 2010, 37(5): 137-138.(in Chinese)]
[26]罗炳佳, 沈诚. 贵州矿山地质环境影响评估[J]. 水文地质工程地质, 2013, 40(1): 134-138.
[LUO B J, SHEN C. Impact assessment of mine geological environment of Guizhou Province[J]. Hydrogeology & Engineering Geology, 2013, 40(1): 134-138.(in Chinese)]
[27]朱建军, 杨泽发, 李志伟. InSAR矿区地表三维形变监测与预计研究进展[J]. 测绘学报, 2019, 48(2): 135-144.
[ZHU J J, YANG Z F, LI Z W. Recent progress in retrieving and predicting mining -induced 3D displacements using InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2): 135-144.(in Chinese)]
[28]韩守富, 赵宝强, 白艳萍, 等. 基于SBAS -InSAR的窑街煤矿开采沉陷研究[J]. 矿山测量, 2019, 47(3): 1-5.
[HAN S F, ZHAO B Q, BAI Y P, et al. Mining subsidence research based on SBAS -InSAR in Yaojie coal mine[J]. Mine Surveying, 2019, 47(3): 1-5.(in Chinese)]
[29]姚亚辉, 张超, 孙莹洁, 等. 基于InSAR监测采煤沉陷区形变特征[J]. 煤炭技术, 2019, 38(1): 16-19.
[YAO Y H, ZHANG C, SUN Y J, et al. Deformation characteristics of coal mining subsidence area based on InSAR[J]. Coal Technology, 2019, 38(1): 16-19.(in Chinese)]
[30]王磊, 蒋创, 张鲜妮, 等. 基于单视线向D -InSAR技术的倾斜煤层开采地表沉陷监测方法[J]. 武汉大学学报(信息科学版), 2019, 44(6): 814-820.
[WANG L, JIANG C, ZHANG X N, et al. Monitoring method of surface subsidence induced by inclined coal seam mining based on single line of sight D -InSAR[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 814-820.(in Chinese)]
[31]李华启, 姜在兴, 邢焕清, 等. 四川盆地西部上三叠统须家河组二段风暴岩沉积特征[J]. 石油与天然气地质, 2003, 24(1): 81-86.
[LI H Q, JIANG Z X, XING H Q, et al. Characteristics of storm deposits in upper Triassic Xujiahe formation, Sichuan basin[J]. Oil & Gas Geology, 2003, 24(1): 81-86.(in Chinese)]
[32]姚鑫, 张永双, 李凌婧, 等. 青藏高原鲜水河活动断裂带蠕变斜坡地质灾害InSAR识别研究[J]. 地质学报, 2017, 91(8): 1694-1705.
[YAO X, ZHANG Y S, LI L J, et al. InSAR -based recognition of slow -moving slop disasters along the Xianshuihe active fault in the Qinghai -Tibetan Plateau[J]. Acta Geologica Sinica, 2017, 91(8): 1694-1705.(in Chinese)]
[33]HU J, LI Z W, DING X L, et al. Resolving three dimensional surface displacements from InSAR measurements: A review[J]. Earth -Science Reviews, 2014, 133: 1-17.
[34]LI H J, ZHONG H Y, LI W C. Research on stability of a slope due to underground mining[J]. Journal of Coal Science & Engineering, 2013, 19(4): 474-482.
[35]李滨, 王国章, 冯振, 等. 地下采空诱发陡倾层状岩质斜坡失稳机制研究[J]. 岩石力学与工程学报, 2015, 34(6): 1148-1161.
[LI B, WANG G Z, FENG Z, et al. Failure mechanism of steeply inclined rock slopes induced by underground mining[J].Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6): 1148-1161.(in Chinese)]
[36]OU D P, TAN K, DU Q, et al. Decision fusion of D -InSAR and Pixel Offset Tracking for coal mining deformation monitoring[J]. Remote sensing, 2018, 10(7): 1-18.

相似文献/References:

[1]席永涛,唐宁,张斌.浅议地质灾害应急会商通信卫星体制[J].水文地质工程地质,2012,39(1):139.
[2]颜宇森,廉勇,杨志勇,等.浅议线性工程地质安全隐患评价[J].水文地质工程地质,2011,38(6):135.
 YAN Yu-sen,LIAN Yong,YANG Zhi-yong,et al.Discussion on the linear projoct geological security risk assessment[J].Hydrogeology & Engineering Geology,2011,38(3):135.
[3]孙健,陶慧,杨世伟,等.皖南山区地质灾害发育规律与防治对策[J].水文地质工程地质,2011,38(5):98.
 SUN Jian,TAO Hui,YANG Shi-wei,et al.Development characteristics and prevention measures of geological hazards in mountain area of southern Anhui Province[J].Hydrogeology & Engineering Geology,2011,38(3):98.
[4]甘建军,黄润秋,范崇荣,等.都江堰—汶川公路边坡地震破坏模式研究[J].水文地质工程地质,2011,38(3):59.
 GAN Jian-jun,HUANG Run-qiu,FAN Chong-rong,et al.A study of the slope failure along the Dujiangyan to Wenchuan Highway after the Wenchuan earthquake[J].Hydrogeology & Engineering Geology,2011,38(3):59.
[5]冯伟,么惠全.采空塌陷区管道成灾机理分析及工程防治措施[J].水文地质工程地质,2010,37(3):112.
 FENG Wei,YAO Hui-quan.Analysis of disaster mechanism and countermeasures for endangered pipeline security in mining subsidence areas[J].Hydrogeology & Engineering Geology,2010,37(3):112.
[6]张艳,刘丹强,周璐红,等.地质灾害土地资源易损性评价定量探讨[J].水文地质工程地质,2010,37(3):122.
 ZHANG Yan,LIU Dan-qiang,ZHOU Lu-hong.Quantitative models of land resources vulnerability assessment of geological hazards[J].Hydrogeology & Engineering Geology,2010,37(3):122.
[7]高姣姣,颜宇森,盛新蒲,等.无人机遥感在西气东输管道地质灾害调查中的应用[J].水文地质工程地质,2010,37(6):126.
 GAO Jiao-jiao,YAN Yu-sen,SHENG Xin-pu,et al.Application of UAV remote sensing in Geologic hazards survey along the Project of west-east Gas Transmission[J].Hydrogeology & Engineering Geology,2010,37(3):126.
[8]唐小明,孙乐玲,游省易,等.大比例尺地质灾害易发区图编制的方法与实践[J].水文地质工程地质,2008,35(1):117.
 TANG Xiao-ming,SUN Le-ling,YOU Sheng-yi,et al.Method and application of large-scale geological disaster susceptibility mapping[J].Hydrogeology & Engineering Geology,2008,35(3):117.
[9]唐京春,吕金波.房山世界地质公园地貌景观特征与开发建设意义[J].水文地质工程地质,2013,40(1):139.
[10]张晓东,刘湘南,赵志鹏,等.盐池县地质灾害遥感调查及空间分布特征分析[J].水文地质工程地质,2017,44(1):164.
 ZHANG Xiaodong,LIU Xiangnan,ZHAO Zhipeng,et al.Survey of geological hazards by RS and the spatial distribution characteristics in Yanchi county[J].Hydrogeology & Engineering Geology,2017,44(3):164.

备注/Memo

备注/Memo:
收稿日期: 2019 -03 -27; 修订日期: 2019 -08 -27
基金项目: 基本科研业务费专项(JYYWF20181501);自然科学基金资助项目(41672359;41807299)
第一作者: 姚佳明(1994 -),男,硕士研究生,主要从事地质灾害InSAR观测研究。E -mail:18813180235@163.com
通讯作者: 姚鑫(1978 -),男,研究员,主要从事地质灾害与InSAR研究。E -mail:yaoxinphd@163.com
更新日期/Last Update: 2020-05-15