[1]陈忠清,朱文韬,吕越,等.砂土地基冲击碾压加固效果影响因素的试验研究[J].水文地质工程地质,2020,47(3):128-134.[doi:10.16030/j.cnki.issn.1000 -3665.201908029]
 CHEN Zhongqing,ZHU Wentao,LYU Yue,et al.Laboratory investigation on influencing factors of improvement effect of rolling dynamic compaction on sand[J].Hydrogeology & Engineering Geology,2020,47(3):128-134.[doi:10.16030/j.cnki.issn.1000 -3665.201908029]
点击复制

砂土地基冲击碾压加固效果影响因素的试验研究()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
47卷
期数:
2020年3期
页码:
128-134
栏目:
工 程 地 质
出版日期:
2020-05-15

文章信息/Info

Title:
Laboratory investigation on influencing factors of improvement effect of rolling dynamic compaction on sand
文章编号:
1000 -3665(2020)03 -0128 -07
作者:
陈忠清12朱文韬1吕越12黄曼12李明东1
1.绍兴文理学院土木工程学院,浙江 绍兴312000;2.浙江省岩石力学与地质灾害重点实验室,浙江 绍兴312000
Author(s):
CHEN Zhongqing12 ZHU Wentao1 LYU Yue12 HUANG Man12 LI Mingdong1
1.School of Civil Engineering, Shaoxing University, Shaoxing, Zhejiang312000, China; 2.Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province, Shaoxing, Zhejiang312000, China
关键词:
地基处理冲击碾压模型试验砂土
Keywords:
ground improvement rolling dynamic compaction (RDC) model test sand
分类号:
TU 441+.4
DOI:
10.16030/j.cnki.issn.1000 -3665.201908029
摘要:
冲击碾压技术已在国内外公路工程、机场工程以及港口工程等不同行业得到广泛应用,但有关冲击碾压加固效果的影响因素及影响规律尚不明确。文章利用自行研制的冲击碾压模拟试验设备,通过室内模型试验手段,分析冲击轮重量、冲击轮形状、牵引速度、土体的初始密实状态及冲击碾压遍数等因素对砂土地基冲击碾压加固效果的影响。试验结果表明:冲击轮重量对砂土地基冲击碾压加固效果的影响起主要作用,冲击轮单轮质量大于10 t时冲击碾压加固砂土地基的影响深度明显增加,2.4~3.6 m深度范围的加固效果最明显;初始状态为松散至中密的砂土对应的冲击碾压加固效果较好;三边形冲击轮的冲击碾压加固效果明显优于四边形和五边形冲击轮;牵引速度在12 km/h范围内时,砂土地基的冲击碾压加固效果随牵引速度的增加而增长,但牵引速度为9 km/h时,浅表层1.4 m深度范围的加固效果较好;同时在12遍冲碾过程中,浅层2.4 m深度范围的加固效果随着冲碾遍数的增加而有较明显增长。研究成果可为冲击碾压法加固浅层砂土地基的设计与施工提供参考。
Abstract:
As an efficient and cost -effective shallow ground improvement technology, rolling dynamic compaction (RDC) has been widely used in various industries such as highway engineering, airport engineering and port engineering at home and abroad, but the influencing factors and rules of improvement effect of the RDC are still seldom examined. By using a self -developed RDC simulation test equipment, a laboratory investigation on influences of factors such as weight of impact module, shape of impact module, working speed, initial dense state of soil and passes of RDC on the improvement effect of RDC for sand are carried out. The results show that (1) the mass of impact module has major influence on the improvement effect of RDC for sand, and while the weight of impact module is greater than 10 t, the influencing depth of RDC increases obviously and the most significant improvement is within the depth of 2.4~3.6 m. (2) The sands with the initial loose and medium -dense state have better improvement effect of RDC. (3) The improvement effect of triangular impact module is better than the quadrilateral and pentagonal impact modules. (4) While the working speed is less than 12 km/h, the improvement effect of RDC for sand increases with the increasing of working speed, but the speed needs to be decreased to be 9 km/h to achieve better improvement of the superficial zone of ground (around 1.4 m deep).(5) The improvement effect also increases with the increasing pass of RDC during 12 passes compaction. The research results can provide reference for the design and construction of improvement of RDC for sand.

参考文献/References:

[1]陈忠清,吕越.冲击碾压技术在浅层地基处理中的应用[J].科技通报,2017,33(1):190-194.
[CHEN Z Q, LYU Y. Application of impact roller compaction in shallow ground improvement[J]. Bulletin of Science and Technology, 2017, 33(1):190-194.(in Chinese)]
[2]CLEGG B, BERRANGé A R. The development and testing of an impact roller[J]. The Civil Engineer in South Africa, 1971, 13(3): 65-73.
[3]车胜创.冲击式压实机的应用、研究与发展前景[J]. 筑路机械与施工机械化,2006,23(3): 10-12.[
CHE S C. Application, research and development of impact compaction machine[J]. Road Machinery & Construction Mechanization, 2006, 23(3): 10-12.(in Chinese)]
[4]Guidelines on earthworks for commercial and residential developments: AS3798—2007[S]. Sydney: Standards Australia Press, 2007.
[5]中华人民共和国住房和城乡建设部. 建筑地基处理技术规范:JGJ79—2012[S].北京:中国建筑工业出版社,2012.[
Ministry of Housing and Urban -Rural Construction of the People’s Republic of China. Technical code for ground treatment of buildings: JGJ79—2012[S]. Beijing: China Architecture & Building Press, 2012.(in Chinese)]
[6]马昊,黄达,肖衡林,等.江北机场高填方夯后碎块石土剪切力学性质研究[J].水文地质工程地质,2019,46(3):88-94.
[MA H, HUANG D, XIAO H L, et al. A study of the shear mechanical properties of high -filled gravel -block soil after dynamic compaction near the Jiangbei airport[J]. Hydrogeology & Engineering Geology, 2019, 46 (3):88-94.(in Chinese)]
[7]黄涛,张西华,曹江英,等.强夯法控制高填方变形的离心模型试验[J].水文地质工程地质,2007, 34(4):121-125.
[HUANG T,ZHANG X H,CAO J Y, et al. Centrifuge model test for high embankment deformation control using dynamic compaction technique[J]. Hydrogeology & Engineering Geology, 2007,34(4): 121-125.(in Chinese)]
[8]陈忠清,徐超,吕越.冲击碾压技术的发展及最新研究进展[J].施工技术,2015,44(增刊):100-104.
[CHEN Z Q, XU C, L Y. Development and prospect for impact roller compaction technique[J]. Construction Technology, 2015, 44(Sup): 100-104.(in Chinese)]
[9]XU C, CHEN Z Q, LI J S, et al. Compaction of subgrade by high -energy impact rollers on an airport runway[J]. Journal of Performance of Constructed Facilities, 2014, 28(5): 04014021.
[10]黄晓波,周立新,杨志夏.饱和软弱地基冲压处理试验研究[J].岩土力学,2006,27(4):653-656.
[HUANG X B, ZHOU L X, YANG Z X. Test study on saturated soft ground treatment by dynamic compaction[J]. Rock and Soil Mechanics, 2006, 27(4):653-656.(in Chinese)]
[11]谭鹏,杨戈,吕奋,等.冲击碾压处理滨海粉细砂土体试验研究[J].同济大学学报(自然科学版),2014,42(2):266-271.
[TAN P, YANG G, L F, et al. Experimental research on treatment of silty -fine sand foundation with impaction and grind method(IGM)[J]. Journal of Tongji University (Natural Science), 2014, 42(2): 266-271.(in Chinese)]
[12]AVALLE D, CARTER J P. Evaluating the improvement from impact rolling on sand[C]//6th International Conference on Ground Improvement Techniques.Coimbra, 2005.
[13]徐超,陈忠清,叶观宝,等.冲击碾压法处理粉土地基试验研究[J].岩土力学,2011,32(增刊2): 389-392.
[XU C, CHEN Z Q, YE G B, et al. Experimental research on ground improvement of silt using impact roller compaction[J]. Rock and Soil Mechanics, 2011, 32(Sup2):389-392.(in Chinese)]
[14]娄国充.冲击压实技术处理高速公路湿陷性地基的应用研究[J].岩石力学与工程学报,2005,24(7): 1207-1210.[LOU G C. Application of impact compaction technology in highway embankment of collapsible loess soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2005,24(7):1207-1210.(in Chinese)]
[15]王吉利,刘怡林,沈兴付,等.冲击碾压法处理黄土地基的试验研究[J].岩土力学,2005, 26(5):755-758.[
WANG J L, LIU Y L, SHEN X F, et al. Experimental investigation on treatment of loess subgrade with impaction and grind method(IGM)[J]. Rock and Soil Mechanics, 2005, 26(5):755-758.(in Chinese)]
[16]AVALLE D, SCOTT B T, JAKSA M B. Ground energy and impact of rolling dynamic compaction - results from research test site[C]//Proceeding of 17th International Conference on Soil Mechanics and Geotechnical Engineering. Alexandria, 2009.
[17]KUJIOO KIM, SANGHYUN CHUN. Finite element analysis to simulate the effect of impact rollers for estimating the influence depth of soil compaction[J]. KSCE Journal of Civil Engineering, 2016, 20(7): 2692-2701.
[18]KUO Y L, JAKSA M B, SCOTT B T,et al. Assessing the Effectiveness of Rolling Dynamic Compaction[C]//Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering. Paris, 2013.
[19]CHEN Z Q, XU C, YE G B, et al. Impact roller compaction of dry sand in laboratory tests[C]//Geo Shanghai International Conference 2014.Shanghai, 2014: 258-269.
[20]陈忠清,徐超,叶观宝,等.冲击碾压模拟试验设备研制[J].岩土力学,2015 36(1):279-285.
[CHEN Z Q, XU C, YE G B, et al. Development of an simulation device for impact roller[J]. Rock and Soil Mechanics, 2015,36(1): 279-285.(in Chinese)]
[21]RAJARATHNAM P, MASOUDIAN M S, JAKSA M,et al. Model Tests of Rolling Dynamic Compaction[C]//19th Southeast Asian Geotechnical Conference & 2nd AGSSEA Conference. Kuala Lumpur, 2016.

备注/Memo

备注/Memo:
收稿日期: 2019 -08 -19; 修订日期: 2019 -11 -16
基金项目: 国家自然科学基金项目(51602198);浙江省公益技术应用研究计划项目(2016C33052);绍兴市公益技术应用研究计划项目(2015B70034)
第一作者: 陈忠清(1984 -),男,博士,讲师,研究方向为地基处理与工程地质。E -mail:q_chen_yk@163.com
通讯作者: 吕越(1982 -), 女,博士,讲师,研究方向为地基处理。E -mail:723823066@qq.com
更新日期/Last Update: 2020-05-15