[1]陈嘉伟,高游,付俊杰,等.不同类型黏土的强度特性及其预测[J].水文地质工程地质,2020,47(3):101-106.[doi:10.16030/j.cnki.issn.1000 -3665.201909038]
 CHEN Jiawei,GAO You,FU Junjie,et al.Strength of different clayey soils and its prediction[J].Hydrogeology & Engineering Geology,2020,47(3):101-106.[doi:10.16030/j.cnki.issn.1000 -3665.201909038]
点击复制

不同类型黏土的强度特性及其预测()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
47卷
期数:
2020年3期
页码:
101-106
栏目:
工 程 地 质
出版日期:
2020-05-15

文章信息/Info

Title:
Strength of different clayey soils and its prediction
文章编号:
1000 -3665(2020)03 -0101 -06
作者:
陈嘉伟高游付俊杰李东映
宁波大学土木与环境工程学院,浙江 宁波315211
Author(s):
CHEN Jiawei GAO You FU Junjie LI Dongying
School of Civil and Environmental Engineering, Ningbo University, Ningbo, Zhejiang315211, China
关键词:
非饱和土强度土水特征曲线毛细水预测
Keywords:
unsaturated soil strength soil water characteristic curve capillary prediction
分类号:
P642.11+6;TU411.3
DOI:
10.16030/j.cnki.issn.1000 -3665.201909038
摘要:
强度特性是非饱和土力学中基础性的研究内容。目前对广吸力范围内非饱和黏土强度的预测研究相对较少。本文首先基于文献中粉质黏土、Madrid黏土和南阳弱膨胀土的非饱和强度特性进行了对比与分析。将不同类型非饱和黏土的强度特性大致分为3种类型:(1)在某一吸力范围试样出现强度峰值,并随着吸力值的进一步增大而降低;(2)达到某一吸力值后其强度几乎维持不变,不受吸力值的影响;(3)其强度随着吸力值的增大而增大。此外,基于现有考虑吸附水膜和毛细水作用的方法拟合广吸力范围内不同类型土的土水特征曲线,并将土水特征曲线分离成吸附土水特征曲线和毛细土水特征曲线。在非饱和土的抗剪强度公式中,认为吸力引起的非饱和强度增强部分主要由毛细水作用决定的,故将非饱和抗剪强度公式中吸力引起非饱和增强项的有效应力系数(即饱和度或有效饱和度)用毛细水对应的饱和度替代。最后,利用修正后的非饱和抗剪强度公式对3种较广吸力范围内非饱和土的强度进行了预测。预测结果表明过渡区段内的强度预测效果较好,但高吸力段非饱和强度的预测还有待进一步研究。
Abstract:
The shear strength of unsaturated soils is a fundamental property in the unsaturated soil mechanics. A systematical study of the strength behavior of the silty clay, Madrid clay and Nanyang weakly expansive soils in the literatures is carried out in this paper. The strength characteristics can be divided into three types: the peak value of shear strength appears in a certain suction range, the strength is almost not affected by suction after reaching a certain suction value, and its strength increases with the increasing suction during shearing. In addition, the method based on capillary action and water film absorption is used to fitting the soil water characteristic curve (SWCC) in the full suction range. This method can separate the capillary water characteristic curve from the absorption water characteristic curve. The capillary water plays a key role in the strength component caused by imposed suction in the unsaturated soil. The strength equation for the unsaturated soils can be modified by the capillary component of degree of saturation. Finally, the modified shear strength criterion is used to predict the strength of soils of the three different types in a wide range of suction. The predicted results can capture well the measured test data in the transition zone, but further studies are necessary to predict the shear strength for different soil types in a high suction range.

参考文献/References:

[1]FREDLUND D G, RAHARDJO H. Soil mechanics for unsaturated soils[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc, 1993.DOI:10.1002/9780470172759.
[2]陈正汉. 重塑非饱和黄土的变形、强度、屈服和水量变化特性[J]. 岩土工程学报, 1999, 2l(1):82-90.
[CHEN Z H. Deformation, strength, yield and moisture change of a remolded unsaturated loess[J]. Chinese Journal of Geotechnical Engineering,1999,21(1):82-90.(in Chinese)]
[3]郭倩怡, 谷天峰, 吴熠哲. 永靖非饱和黄土抗剪强度试验研究[J]. 水文地质工程地质, 2015, 42(6): 103-107.
[GUO Q Y, GU T F, WU Y Z. A test study of shear strength of unsaturated loess in Yongjing County[J]. Hydrogeology & Engineering Geology, 2015, 42(6): 103-107.(in Chinese)]
[4]冯立, 张茂省, 孙萍萍,等. 非饱和土脱湿与吸湿水力特性对比研究[J]. 水文地质工程地质, 2016, 43(2): 134-139.
[FENG L, ZHANG M S, SUN P P, et al. A study of the hydro -mechanical properties of unsaturated loess under the drying and wetting path[J]. Hydrogeology & Engineering Geology, 2016, 43(2): 134-1396.(in Chinese)]
[5]VANAPALLI S K, FREDLUND D G, PUFAHL D E, et al. Model for the prediction of shear strength with respect to soil suction[J]. Canadian Geotechnical Journal, 1996, 33(3): 379-392.
[6]FREDLUND D G, XING A Q, FREDLUND M D, et al. The relationship of the unsaturated soil shear to the soil -water characteristic curve[J]. Canadian Geotechnical Journal, 1996, 33(3): 440-448.
[7]ALONSO E E, PEREIRA J M, VAUNAT J, et al. A microstructurally based effective stress for unsaturated soils[J]. Géotechnique, 2010, 60(12): 913-925.
[8]GAO Y, SUN D A, ZHU Z C, et al. Hydromechanical behavior of unsaturated soil with different initial densities over a wide suction range[J]. Acta Geotechnica, 2019, 14(2): 417-428.
[9]ESCARIO V, JUCA J F T. Strength and deformation of partly saturated soils[C]//Proceedings of 12th International Conference on Soil Mechanics and Foundation Engineering (ICSMFE). Rio de Janeiro, Brazil, 1989, 1: 43-46.
[10]张俊然, 孙德安, 姜彤,等. 宽广吸力范围内弱膨胀土的抗剪强度及其预测[J]. 岩土工程学报, 2016, 38(6): 1064-1070.
[ZHANG J R, SUN D A, JIANG T, et al. Shear strength of weakly expansive soils and its prediction in a wide range of suction[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1064-1070.(in Chinese)]
[11]VAN GENUCHTEN M T. A closed -form equation for predicting the hydraulic conductivity of unsaturated Soils1[J]. Soil Science Society of America Journal, 1980, 44(5): 892.
[12]FREDLUND D G, XING A Q. Equations for the soil -water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532.
[13]OR D, TULLER M. Liquid retention and interfacial area in variably saturated porous media: Upscaling from single -pore to sample -scale model[J]. Water Resources Research, 1999, 35(12):3591-3605.
[14]KONRAD J M, LEBEAU M. Capillary -based effective stress formulation for predicting shear strength of unsaturated soils[J]. Canadian Geotechnical Journal, 2015, 52(12): 2067-2076.
[15]ZHOU A N, HUANG R Q, SHENG D C. Capillary water retention curve and shear strength of unsaturated soils[J]. Canadian Geotechnical Journal, 2016, 53(6): 974-987.
[16]CAMPBELL G S, SHIOZAWAS. Prediction of hydraulic properties of soils using particle -size distribution and bulk density data, In Indirect methods for estimating the hydraulic properties of unsaturated soils[M]. University of California Riverside, 1992:317-328.
[17]LEBEAU M, KONRAD J M. A new capillary and thin film flow model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 2010, 46(12). DOI:10.1029/2010wr009092.

相似文献/References:

[1]王俊梅,刘海宁.水库蓄水引发的地下水位抬升和渗控措施研究[J].水文地质工程地质,2011,38(5):115.
 WANG Jun-mei,LIU Hai-ning.Seepage control of unsaturated soil based on the SWCC[J].Hydrogeology & Engineering Geology,2011,38(3):115.
[2]杜广印,刘松玉.排水粉喷桩加固软土地基桩周土体强度变化规律[J].水文地质工程地质,2010,37(3):87.
 DU Guang-yin,LIU Song-yu.Strength change feature of surrounding soil in the vicinity of DJM columns in ground improved by DJM-PVD combined method[J].Hydrogeology & Engineering Geology,2010,37(3):87.
[3]黄志全,陈贤挺,姜彤,等.洛阳地区非饱和土强度试验研究[J].水文地质工程地质,2009,36(3):103.
 HUANG Zhi-quan,CHEN Xian-ting,JIANG Tong,et al.Study on the strength experiment of unsaturated soil[J].Hydrogeology & Engineering Geology,2009,36(3):103.
[4]张科,刘享华,杨红宣,等.含孔洞裂隙岩体灌浆后力学特性的物理试验与数值模拟[J].水文地质工程地质,2019,46(1):79.[doi:10.16030/j.cnki.issn.1000-3665.2019.01.11]
 ZHANG Ke,LIU Xianghua,YANG Hongxuan,et al.Experimental and numerical simulation of the mechanical characteristics of rocks containing hole and flaw after grouting[J].Hydrogeology & Engineering Geology,2019,46(3):79.[doi:10.16030/j.cnki.issn.1000-3665.2019.01.11]
[5]刘浩旭,朱剑锋,饶春义,等.盾构施工与波浪荷载耦合作用后软土力学特性[J].水文地质工程地质,2019,46(04):97.[doi:10.16030/j.cnki.issn.1000-3665.2019.04.13]
 LIU Haoxu,ZHU Jianfeng,RAO Chunyi,et al.Mechanical properties of soft clay after coupling between shield construction and wave loading[J].Hydrogeology & Engineering Geology,2019,46(3):97.[doi:10.16030/j.cnki.issn.1000-3665.2019.04.13]
[6]魏建柄,刘卫斌.非饱和土蠕变力学特性试验及经验模型研究[J].水文地质工程地质,2019,46(06):67.[doi:10.16030/j.cnki.issn.1000-3665.2019.06.09]
 WEI Jianbing,LIU Weibing.An experimental study of the creep mechanical properties of unsaturated soil and empirical models[J].Hydrogeology & Engineering Geology,2019,46(3):67.[doi:10.16030/j.cnki.issn.1000-3665.2019.06.09]
[7]祁昊,冯文凯,陈建峰,等.降雨作用下欢喜坡冰水堆积体角砾土强度特性[J].水文地质工程地质,2017,44(4):78.
 QI Hao,FENG Wenkai,CHEN Jianfeng,et al.Strength characteristics of the breccia soil in the Huanxipo outwash deposit under rainfall[J].Hydrogeology & Engineering Geology,2017,44(3):78.

备注/Memo

备注/Memo:
收稿日期: 2019 -09 -11; 修订日期: 2019 -11 -16
基金项目: 国家自然科学基金项目资助(41902279);浙江省自然科学基金项目资助(LQ19E080006)
第一作者: 陈嘉伟(2000 -),男,本科生,研究方向为非饱和土力学特性研究。E -mail:18767744863@163.com
通讯作者: 高游(1989 -),男,博士,讲师,从事非饱和土力学研究。E -mail: gaoyou@nbu.edu.cn
更新日期/Last Update: 2020-05-15