[1]陈新瑞,宋玲,孙雯,等.“开敞系统”下单向冻融试验装置的研制与应用[J].水文地质工程地质,2020,47(3):69-78.[doi:10.16030/j.cnki.issn.1000 -3665.201910003]
 CHEN Xinrui,SONG Ling,SUN Wen,et al.Development and application of the unidirectional freezing -thawing test device under the “open -system conditions”[J].Hydrogeology & Engineering Geology,2020,47(3):69-78.[doi:10.16030/j.cnki.issn.1000 -3665.201910003]
点击复制

“开敞系统”下单向冻融试验装置的研制与应用()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
47卷
期数:
2020年3期
页码:
69-78
栏目:
工 程 地 质
出版日期:
2020-05-15

文章信息/Info

Title:
Development and application of the unidirectional freezing -thawing test device under the “open -system conditions”
文章编号:
1000 -3665(2020)03 -0069
作者:
陈新瑞1宋玲1孙雯1许清峰2刘沛凯1惠强1李鑫鑫1吴浩1
1.石河子大学水利建筑工程学院,新疆 石河子832003;2.新疆天富能源股份有限公司红山嘴电厂,新疆 石河子832000
Author(s):
CHEN Xinrui1 SONG Ling1 SUN Wen1 XU Qingfeng2 LIU Peikai1 HUI Qiang1 LI Xinxin1 WU Hao1
1.College of Water & Architectural Engineering, Shihezi University, Shihezi, Xinjiang832003, China;2.Hongshanzui Power Plant of Xinjiang Tianfu Energy Co., Ltd., Shihezi, Xinjiang832000, China
关键词:
冻融试验装置地下水补给大尺寸模型单向冻融黏土
Keywords:
freezing -thawing test device groundwater recharge large scale model unidirectional freeze -thaw clay
分类号:
P642.11+4;TU411.2;TU415
DOI:
10.16030/j.cnki.issn.1000 -3665.201910003
摘要:
季节冻土区的冻胀和融沉作用显著,对该地区构筑物造成了不同程度的冻害破坏,尤其对地下水埋深较浅区域尤为严重,故开展可对大尺寸模型进行不同地下水水位下单向冻融过程模拟的系统装置的研制,具有重要的科研意义和工程价值。研制的该冻融系统装置,主要包括箱体结构、制冷/热系统、边界温控系统、供电系统、地下水补给系统、保温隔热系统和量测系统等组成。箱体结构由6 mm厚钢板材料制作而成;制冷/热系统主要由基于帕尔贴效应的半导体制冷片组成实现制冷/热;边界温控系统主要依靠电子温控器进行控温;地下水补给系统主要利用改进型的马里奥特瓶进行地下水的补给;保温隔热系统主要采用V0级橡塑保温板;量测系统可根据试验目进行自由搭配组合。使用该试验装置对大尺寸新疆粉质黏土土样进行了在地下水埋深分别为80 cm和40 cm下的单向冻融过程试验研究,试验结果表明:在冻结和融沉过程中,温度的变化速率与土层距制冷/热板的距离成反比;冻结锋面的迁移可分为2个阶段;冻结过程中含水率变化分为快速和缓慢变化2个阶段;冻胀量的变化可分为2个阶段;融沉量的变化可分为3个阶段。温度、含水率、冻结锋面和冻融量变化等试验结果均证明了此试验装置的可靠性,此装置可为研制能对大尺寸模型进行开放条件下单向冻融模拟的设备提供借鉴。
Abstract:
The effect of freezing and melting in the seasonal frozen soil area is significant. It may cause various degrees of freezing damage to the structure of this area, especially serious for the areas where groundwater water is shallow. Therefore, it is of great scientific significance and engineering value to develop a system which can simulate the unidirectional freezing -thawing process under different groundwater levels with large -scale models. The freezing -thawing system consists of a box structure, refrigeration/heat system, boundary temperature control system, power supply system, groundwater recharge system, thermal insulation system and measurement system. The box structure is made of 6 mm thick steel plate material. The refrigeration/heat system is mainly composed of a semiconductor cooling sheet based on the Peltier effect to achieve refrigeration/heat. The boundary temperature control system mainly relies on the electronic temperature controller for temperature control. The groundwater recharge system mainly uses the modified Mariotte bottle for groundwater recharge. The thermal insulation system mainly adopts a V0 -grade rubber and plastic insulation board. The measuring system can be combined freely according to the purpose of the test. Using this experimental device, the unidirectional freezing and thawing process of large size silty clay samples under groundwater depths of 80 cm and 40 cm is carried out. The test results show that in the process of freezing and thawing settlement, the change rate of temperature is inversely proportional to the distance between the soil layer and the refrigeration/heating plate. The migration of the freezing front can be divided into two stages. The change in water content in the freezing process can be divided into two stages: rapid and slow. The change in frost heaving can be divided into two stages, and the change in the thawing settlement can be divided into three stages. The test results for temperature, moisture content, frozen front and freezing -thawing change also show the reliability of the test device. This device can provide a reference for the development of equipment that can simulate unidirectional freezing -thawing under the open conditions for large -scale models.

参考文献/References:

[1]蒋钰峰, 吴光, 刘芳. 冻融循环条件下碳质千枚岩物理力学性质研究[J]. 水文地质工程地质, 2018, 45(6): 114-121.
[JIANG Y F, WU G, LIU F. Research on the physical and mechanic properties of carbonaceous phyllite subjected to freezing -thawing cycles[J]. Hydrogeology & Engineering Geology, 2018, 45(6): 114-121.(in Chinese)]
[2]卢连长, 张泽, 冯文杰,等. 冻融循环作用下冻结黏土矿物物理力学性质研究[J]. 水文地质工程地质, 2017, 44(4): 118-123.
[LU L C, ZHANG Z, FENG W J, et al. Research on variability of freezing -thawing cycle on basic physical and mechanics properties of clay minerals[J]. Hydrogeology & Engineering Geology, 2017, 44(4): 118-123.(in Chinese)]
[3]盛岱超, 张升, 贺佐跃. 土体冻胀敏感性评价[J]. 岩石力学与工程学报, 2014, 33(3): 594-605.
[SHENG D C, ZHANG S, HE Z Y. Assessing frost susceptibility of soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(3): 594-605.(in Chinese)]
[4]李兆宇. 季节冻土区粉质粘土冻胀性试验研究[D]. 哈尔滨:黑龙江大学, 2011.
[LI Z Y. Experimental study on frost -heaving of silty clay in seasonally frozen soil regions[D]. Harbin: Heilongjiang University, 2011.(in Chinese)]
[5]BRONFENBRENER L. The modelling of the freezing process in fine -grained porous media: Application to the frost heave estimation[J]. Cold Regions Science and Technology, 2009, 56(2/3): 120-134.
[6]THOMAS H R, HE Y. Analysis of coupled heat, moisture and air transfer in a deformable unsaturated soil[J]. Géotechnique, 1995, 45(4): 677-689.
[7]DR GUNNAR BESKOW B F. Soil freezing and frost heaving with special application to roads and railroads[J]. Soil Science, 1948, 65(4): 355.
[8]黄英豪, 蔡正银, 张晨, 等. 渠道冻胀离心模型试验设备的研制[J]. 岩土工程学报, 2015(4): 615-621.v[HUANG Y H, CAI Z Y, ZHANG C, et al. Development of centrifugal model test facility for frost -heave of channels[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 615-621.(in Chinese)]
[9]张莲海, 马巍, 杨成松,等. 土在冻结及融化过程中的热力学研究现状与展望[J]. 冰川冻土, 2013, 35(6): 1505-1518.v[ZHANG L H, MA W, YANG C S, et al. A review and prospect of the thermodynamics of soils subjected to freezing and thawing[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1505-1518.(in Chinese)]
[10]KINOSITA S. Effects of initial soil -water conditions on frost heaving characteristics[J]. Engineering Geology, 1979, 13(1/2/3/4): 41-52.
[11]TABER S. Frost heaving[J]. The Journal of Geology, 1929, 37(5): 428-461.
[12]童长江. 我国冻土融化压缩性研究[J]. 冰川冻土, 1988, 10(3): 327-331.
[TONG C J. Compression characteristics of thawing permafros[J]. Journal of Glaciology and Geocryology, 1988, 10(3): 327-331.(in Chinese)]
[13]邴慧, 何平, 杨成松,等. 开放系统下硫酸钠盐对土体冻胀的影响[J]. 冰川冻土, 2006, 28(1): 126-130.
[BING H, HE P, YANG C S, et al. Influence of sodium sulfate on soil frost heaving in an open system[J]. Journal of Glaciology and Geocryology, 2006, 28(1): 126-130.(in Chinese)]
[14]彭丽云, 刘建坤, 田亚护. 粉质粘土的冻胀特性研究[J]. 水文地质工程地质, 2009, 36(6): 62-67.
[PENG L Y, LIU J K, TIAN Y H. Study on frost heaving property of silty caly[J]. Hydrogeology & Engineering Geology, 2009, 36(6): 62-67.(in Chinese)]
[15]胡坤, 周国庆, 李晓俊,等. 不同约束条件下土体冻胀规律[J]. 煤炭学报, 2011, 36(10): 1653-1658.
[HU K, ZHOU G Q, LI X J, et al. Experiments on frost heave of artificial frozen soils with different constraints[J]. Journal of China Coal Society, 2011, 36(10): 1653-1658.(in Chinese)]
[16]王永涛, 王大雁, 郭妍,等. 青藏粉土单向冻结冻胀率变化特性研究[J]. 冰川冻土, 2016, 38(2): 409-415.
[WANG Y T, WANG D Y, GUO Y, et al. Experimental study of the development characteristic of frost heaving ratio of the saturated Tibetan silt under one -dimensional freezing[J]. Journal of Glaciology and Geocryology, 2016, 38(2): 409-415.(in Chinese)]
[17]王永涛, 王大雁, 马巍,等. 青藏粉质黏土单向冻结冷生构造发育及冻胀发展过程试验研究[J]. 岩土力学, 2016, 37(5): 1333-1342.
[WANG Y T, WANG D Y, MA W, et al. Experimental study of development of cryostructure and frost heave of the Qinghai -Tibet silty clay under one -dimensional freezing[J]. Rock and Soil Mechanics, 2016, 37(5): 1333-1342.(in Chinese)]
[18]马宏岩, 张锋, 冯德成,等. 单向冻结条件下饱和粉质黏土的冻胀试验研究[J]. 建筑材料学报, 2016, 19(5): 926-932.
[MA H Y, ZHANG F, FENG D C, et al. Experimental study on frost heave of saturated silty clay under single side freezing[J]. Journal of Building Materials, 2016, 19(5): 926-932.(in Chinese)]
[19]王建平, 王文顺, 史天生. 人工冻结土体冻胀融沉的模型试验[J]. 中国矿业大学学报, 1999, 28(4): 303-306.
[WANG J P, WANG W S, SHI T S. Model experiment of frost heave and thawing settlement of artificially frozen soils[J]. Journal of China University of Mining & Technology, 1999, 28(4): 303-306.(in Chinese)]
[20]陈湘生, 濮家骝, 罗小刚,等. 土壤冻胀离心模拟试验[J]. 煤炭学报, 1999, 24(6): 615-619.
[CHEN X S, PU J L, LUO X G, et al. Centrifuge modelling tests of soil freezing heave[J]. Journal of China Coal Society, 1999, 24(6): 615-619.(in Chinese)]
[21]陈湘生, 濮家骝, 殷昆亭,等. 地基冻 -融循环离心模型试验研究[J]. 清华大学学报(自然科学版), 2002, 42(4): 531-534.
[CHEN X S, PU J L, YIN K T, et al. Centrifuge modelling tests of foundation undergoing two cycles of frost heave and thaw settlement[J]. Journal of Tsinghua University(Science and Technology), 2002, 42(4): 531-534.(in Chinese)]
[22]张晨, 蔡正银, 黄英豪,等. 输水渠道冻胀离心模拟试验[J]. 岩土工程学报, 2016, 38(1): 109-117.
[ZHANG C, CAI Z Y, HUANG Y H, et al. Centrifuge modelling of frost -heave of Canals[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 109-117.(in Chinese)]
[23]张晨, 蔡正银, 徐光明,等. 冻土离心模型试验相似准则分析[J]. 岩土力学, 2018, 39(4): 1236-1244.
[ZHANG C, CAI Z Y, XU G M, et al. Dimensional analysis of centrifugal modeling of frozen soil[J]. Rock and Soil Mechanics, 2018, 39(4): 1236-1244.(in Chinese)]
[24]蔡正银, 吴志强, 黄英豪, 等. 北疆渠道基土盐 -冻胀特性的试验研究[J]. 水利学报, 2016, 47(7): 900-906.
[CAI Z Y, WU Z Q, HUANG Y H, et al. Salt -frost heave properties of channel bed soil in the Northern Xinjiang[J]. Journal of Hydraulic Engineering, 2016, 47(7): 900-906.(in Chinese)]
[25]齐吉琳, 马巍. 冻土的力学性质及研究现状[J]. 岩土力学, 2010, 31(1): 133-143.
[QI J L, MA W. State -of -art of research on mechanical properties of frozen soils[J].Rock and Soil Mechanics,2010,31(1): 132-140 (in Chinese)]
[26]卞晓琳, 何平, 施烨辉. 土体冻胀与地下水关系的研究进展[J]. 中国农村水利水电, 2007(4): 24-27
.[BIAN X L, HE P, SHI Y H. The research advance in the relationship between soil frost heave and groundwater[J]. China Rural Water and Hydropower, 2007(4): 24-27.(in Chinese)]
[27]OLIPHANT J L, TICE A R, NAKANO Y. Water migration due to a temperature gradient in frozen soil[C]//Permafrost: 4th International Conference, National Academy Press, Washington, DC. 1983.
[28]谢森传, 沈言琍. 马利奥特(Mariotte)瓶装置的改进及应用[J]. 水文地质工程地质, 1985, 12(2): 18-19.
[XIE S C, SHEN Y L. Improvement and application of Mariotte bottle device[J]. Hydrogeology & Engineering Geology, 1985, 12(2): 18-19.(in Chinese)]
[29]郑美玉, 赵小宇. 冻融作用对季节冻土区粉质粘土冻胀融沉特性的影响分析[J]. 水电能源科学, 2013, 31(12): 167-170.
[ZHENG M Y, ZHAO X Y. Impact of freezing and thawing process on frost heaving and thaw settlement characteristics of silty clay in seasonal frozen soil region[J]. Water Resources and Power, 2013, 31(12): 167-170.(in Chinese)]
[30]蔡瑛. 深土冻融特性试验及工程应用研究[D]. 淮南: 安徽理工大学, 2007.
[CAI Y. The speciality tests of freeze -thaw on deep soil and research on project application[D]. Huainan, China: Anhui University of Science & Technology, 2007.(in Chinese)]
[31]李卓, 盛金保, 刘斯宏,等. 土工袋防渠道冻胀模型试验研究[J]. 岩土工程学报, 2014, 36(8): 1455-1463.
[LI Z, SHENG J B, LIU S H, et al. Model tests on frost heave -prevented channels using soilbags[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1455-1463.(in Chinese)]
[32]王冬. 兰州粉质粘土冻胀融沉特性研究[D]. 兰州: 兰州理工大学, 2014.
[ WANG D. Study on the characteristic of frost heave and thaw settlement of lanzhou silty clay[D]. Lanzhou: Lanzhou University of Technology, 2014.(in Chinese)]
[33]周国庆. 饱水砂层中结构的融沉附加力研究[J]. 冰川冻土, 1998, 20(2): 120 -123.
[ZHOU G Q. An extra -force on a structure due to thaw settlement of saturated sand[J]. Journal of Glaciolgy and Geocryology, 1998, 20(2): 120 -123.(in Chinese)]

相似文献/References:

[1]聂振龙,陈宗宇,张光辉,等.黑河流域民乐山前隐伏构造带地下水补给与更新[J].水文地质工程地质,2010,37(2):6.
 NIE Zhen-long,CHEN Zong-yu,ZHANG Guang-hui,et al.Groundwater recharge and renewal in the Minle Piedmont Plain of the Heihe River Basin[J].Hydrogeology & Engineering Geology,2010,37(3):6.
[2]李亚民,王英男,徐旭,等.奎屯河流域南洼地地下水补给特征分析[J].水文地质工程地质,2008,35(4):31.
 LI Ya-min,WANG Ying-nan,XU Xu,et al.Characteristics of groundwater rechargement of Nanwadi in Kuitun River Basin[J].Hydrogeology & Engineering Geology,2008,35(3):31.
[3]申豪勇,梁永平,唐春雷,等.应用氯量平衡法估算娘子关泉域典型岩溶区的降水入渗系数[J].水文地质工程地质,2018,45(06):31.[doi:10.16030/j.cnki.issn.1000-3665.2018.06.05]
 SHEN Haoyong,LIANG Yongping,TANG Chunlei,et al.Estimation of the infiltration coefficient based on chloride mass balance in a typical karst region of the Niangziguan spring area[J].Hydrogeology & Engineering Geology,2018,45(3):31.[doi:10.16030/j.cnki.issn.1000-3665.2018.06.05]
[4]王雨山,李戍,李海学,等.海原盆地地下水咸化特征和控制因素[J].水文地质工程地质,2019,46(04):10.[doi:10.16030/j.cnki.issn.1000-3665.2019.04.02]
 WANG Yushan,LI Shu,LI Haixue,et al.Groundwater salinization characteristics and controlling factors in the Haiyuan Basin[J].Hydrogeology & Engineering Geology,2019,46(3):10.[doi:10.16030/j.cnki.issn.1000-3665.2019.04.02]

备注/Memo

备注/Memo:
收稿日期: 2019 -10 -07; 修订日期: 2019 -11 -16
基金项目: 国家自然科学基金项目资助(51669031)
第一作者: 陈新瑞(1995 -),男,硕士研究生,主要从事冻土工程研究。E -mail:alongcxr@163.com
通讯作者: 宋玲(1971 -),女,博士,教授,硕士生导师,主要从事冻土工程研究和教学工作。E -mail: xjsdsl0514@163.com
更新日期/Last Update: 2020-05-15