[1]刘洋,袁松虎,张耀强,等.电化学循环井耦合氧化 -还原降解地下水中三氯乙烯[J].水文地质工程地质,2020,47(3):44-51.[doi:10.16030/j.cnki.issn.1000 -3665.201909019]
 LIU Yang,YUAN Songhu,ZHANG Yaoqiang,et al.Electrolytic circulation well coupled with oxidation and reduction for trichloroethylene degradation in groundwater[J].Hydrogeology & Engineering Geology,2020,47(3):44-51.[doi:10.16030/j.cnki.issn.1000 -3665.201909019]
点击复制

电化学循环井耦合氧化 -还原降解地下水中三氯乙烯()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
47卷
期数:
2020年3期
页码:
44-51
栏目:
水 文 地 质
出版日期:
2020-05-15

文章信息/Info

Title:
Electrolytic circulation well coupled with oxidation and reduction for trichloroethylene degradation in groundwater
文章编号:
1000 -3665(2020)03 -0044 -08
作者:
刘洋袁松虎张耀强刘洋蔡其正郑云松
中国地质大学(武汉)生物地质与环境地质国家重点实验室,湖北 武汉430074
Author(s):
LIU Yang YUAN Songhu ZHANG Yaoqiang LIU Yang CAI Qizheng ZHENG Yunsong
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, Hubei430074, China
关键词:
地下水循环井电化学分子氧活化钯催化还原三氯乙烯
Keywords:
groundwater circulation well electrochemistry molecular oxygen activation Pd -catalytic reduction trichloroethylene
分类号:
P641;X173
DOI:
10.16030/j.cnki.issn.1000 -3665.201909019
摘要:
三氯乙烯(TCE)是一种地下水中常见的有机污染物,传统的地下水循环井修复技术虽然有效但耗时长,且需配套地面处理。文章研发了一种电化学循环井耦合修复体系,以期通过顺序化学氧化 -还原作用高效快速降解地下水中TCE。以地下水循环井为基础,通过抽水井中的地下水电解,原位提供O2和H2,投加Fe(Ⅱ) -EDTA络合物活化O2产生羟基自由基氧化降解TCE,进而利用钯催化剂催化剩余的H2还原降解TCE。在二维砂槽模拟含水层中评价了该体系的运行效果,含水层中初始TCE浓度为7.50 mg/L,经过13天的连续通电处理后,TCE浓度降低到1.65 mg/L,降解率达到78%。处理后Cl-浓度相应增加118.20 μmol/L,接近于TCE降解量(44.50 μmol/L)的3倍,证明TCE近乎完全脱氯。运行过程中,TCE平均降解速率由0~5 d的0.90 mg/(L·d) 降低到9~13 d的0.10 mg/(L·d),氧化降解主要发生在前期阶段,钯催化还原效率较为稳定,后期两种过程降解效率都逐渐下降,主要原因是溶解态Fe(Ⅱ)浓度减少以及钯催化剂活性降低。该耦合修复体系是基于地下水循环井技术的改进,其氧化 -还原作用机理有望实现地下水中多种不同有机污染物的降解。
Abstract:
Trichloroethylene (TCE) is a common organic pollutant in groundwater. Traditional groundwater circulation wells (GCW) are effective but time -consuming and requires ground treatment. This study develops a coupled system for treating TCE -contaminated groundwater through sequential chemical oxidation and reduction. In this system, groundwater is circulated by two separated wells, and electrolysis in a pumping well is utilized to generate O2 and H2 in situ. To degrade TCE, Fe(Ⅱ) -EDTA is added to activate O2 to hydroxyl radicals for oxidation, and Pd catalyst is coupled to catalyze H2 for reduction. The system performance is evaluated in a 2D sandy tank. The initial TCE concentration in the tank is 7.50 mg/L. After 13 days of continuous electrolytic treatment, TCE concentration decreases to 1.65 mg/L (78%). The corresponding increase in Cl-concentration (118.20 μmol/L) is nearly three times that of the decrease in TCE concentration (44.50 μmol/L), which proves the near complete TCE dichlorination. During the operation, the average degradation rate of TCE decreases from 0.90 (0~5 d) to 0.10 (9~13 d) mg/(L·d). Oxidative degradation mainly occurres in the early stage, and catalytic reduction efficiency is relatively stable. The degradation efficiency of both mechanisms decreased gradually in the later stage, which is attributed to the decreased concentration of dissolved Fe(Ⅱ) and decreased activity of Pd catalyst. The coupled system is an improvement of GCW technique, which is feasible for oxidizing and reducing a wide range of different organic contaminants.

参考文献/References:

[1]万梅, 刘锐, 汤灵容, 等. 工业区域土壤和地下水中挥发性氯代烃的污染现状与防治法规[J]. 环境工程, 2011, 29(增刊1): 397-401.
[WAN M, LIU R, TANG L R, et al. Pollution and statutes of volatile chlorinated hydrocarbons in soil and groundwater of industry[J]. Environmental Engineering, 2011, 29(Sup1): 397-401.(in Chinese)]
[2]陆海燕, 辛宝东, 孙颖, 等. 北京市平原区地下水有机污染时空分布特征[J]. 水文地质工程地质, 2014, 41(1): 34-40.
[LU H Y, XIN B D, SUN Y, et al. Temporal and spatial distribution characteristics of organic contamination in groundwater in the Beijing plain[J]. Hydrogeology & Engineering Geology, 2014, 41(1): 34-40.(in Chinese)]
[3]LAN L J, LIU Y, LIU S J, et al. Effect of the supports on catalytic activity of Pd catalysts for liquid -phase hydrodechlorination/hydrogenation reaction[J]. Environmental Technology, 2019, 40(12): 1615-1623.
[4]SCHREIER C G, REINHARD M. Catalytic hydrodehalogenation of chlorinated ethylenes using palladium and hydrogen for the treatment of contaminated water[J]. Chemosphere, 1995, 31 (6): 3475-3487.
[5]LOWRY G V, REINHARD M. Pd -catalyzed TCE dechlorination in water: effect of H2 (aq) and H2 -utilizing competitive solutes on the TCE dechlorination rate and product distribution[J]. Environmental Science & Technology, 2001, 35 (4): 696-702.
[6]MCNAB W W, RUIZ R, REINHARD M. In -situ destruction of chlorinated hydrocarbons in groundwater using catalytic reductive dehalogenation in a reactive well: Testing and operational experiences[J]. Environmental Science & Technology, 2000, 34(1): 149-153.
[7]SCHüTH C, KUMMER N A, WEIDENTHALER C, et al. Field application of a tailored catalyst for hydrodechlorinating chlorinated hydrocarbon contaminants in groundwater[J]. Applied Catalysis B -Environmental, 2004, 52(3): 197-203.
[8]DAVIE M G, CHENG H F, HOPKINS G D, et al. Implementing heterogeneous catalytic dechlorination technology for remediating TCE -contaminated groundwater[J]. Environmental Science & Technology, 2008, 42(23): 8908-8915.
[9]YU X, WU T, YANG X J, et al. Degradation of trichloroethylene by hydrodechlorination using formic acid as hydrogen source over supported Pd catalysts[J]. Journal of Hazardous Materials, 2016, 305: 178-189
[10]MCNAB W W Jr, RUIZ R. Palladium -catalyzed reductive dehalogenation of dissolved chlorinated aliphatics using electrolytically -generated hydrogen[J]. Chemosphere, 1998, 37(5): 925-936.
[11]ZHENG M M, BAO J G, LIAO P, et al. Electrogeneration of H2 for Pd -catalytic hydrodechlorination of 2,4 -dichlorophenol in groundwater[J]. Chemosphere, 2012, 87(10): 1097-1104.
[12]XIE W J, YUAN S H, MAO X H, et al. Electrocatalytic activity of Pd -loaded Ti/TiO2 nanotubes cathode for TCE reduction in groundwater[J]. Water Research, 2013, 47 (11): 3573-3582.
[13]XIE S W, YUAN S H, LIAO P, et al. Pd -catalytic hydrodechlorination of chlorinated hydrocarbons in groundwater using H2 produced by a dual -anode system[J]. Water Research, 2015, 86, 74-81.
[14]ZHANG M, SHI Q, SONG X Z, et al. Recent electrochemical methods in electrochemical degradation of halogenated organics: a review[J]. Environmental Science and Pollution Research, 2019, 26(11): 10457 -10486.
[15]张成武, 李天一, 廉静茹, 等. Fe(Ⅱ)活化O2高级氧化降解罗丹明B染料[J]. 中国环境科学, 2018, 38(2): 560-565.
[ZHANG C W, LI T Y, LIAN J R, et al. Study on degradation of rhodamine B by advanced oxidation based on O2 activation by Fe(Ⅱ)[J]. China Environmental Science, 2018, 38(2): 560-565.(in Chinese)]
[16]JONES A M, GRIFFIN P J, WAITE T D. Ferrous iron oxidation by molecular oxygen under acidic conditions: The effect of citrate, EDTA and fulvic acid[J]. Geochimica et Cosmochimica Acta, 2015, 160: 117-131.
[17]WANG L, CAO M H, AI Z H, et al. Design of a highly efficient and wide pH Electro -Fenton oxidation system with molecular oxygen activated by ferrous -tetrapolyphosphate complex[J]. Environmental Science & Technology, 2015, 49(5):, 3032-3039.
[18]ALLEMAN B C. In -well treatment for chlorinated solvent remediation[M] //SERDP/ESTCP Environmental Remediation Technology. New York, NY: Springer New York, 2010: 591-629.[19]LAINE P, MATILAINEN R. Simultaneous determination of DTPA, EDTA, and NTA by UV -visible spectrometry and HPLC[J]. Analytical and Bioanalytical Chemistry, 2005, 382(7): 1601-1609.
[20]荆国华, 李伟, 施耀, 等. Fe+3(EDTA)还原菌的分离及其性能[J]. 中国环境科学, 2004, 24(4): 447-451.
[JING G H, LI W, SHI Y, et al. Isolation and its properties of bacterial strain for Fe+3(EDTA) reduction[J]. China Environmental Science, 2004, 24(4): 447-451.(in Chinese)]
[21]GEORGI A, VELASCO POLO M, CRINCOLI K, et al. Accelerated catalytic Fenton reaction with traces of iron: an Fe -Pd -multicatalysis approach[J]. Environmental Science & Technology, 2016, 50(11): 5882-5891.
[22]BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O- in aqueous solution)[J]. Journal of Physical and Chemical Reference data, 1988, 17(2): 513-886.
[23]KEENAN C R, SEDLAK D L. Ligand -enhanced reactive oxidant generation by nanoparticulate zero -valent iron and oxygen[J]. Environmental Science & Technology, 2008, 42(18): 6936-6941.
[24]李元杰, 王晓琳, 王浩, 等. 污染场地修复技术的简要成本 -效益分析[C]//中国环境科学学会. 中国环境科学学会学术年会论文集. 厦门:中国环境科学出版社, 2017: 776-781.
[LI Y J, WANG X L, WANG H, et al. A brief cost -benefit analysis of remediation techniques for contaminated sites[C]//Chinese Society For Environmental Sciences. Proceedings of the annual meeting of the Chinese society of Environmental Science. Xiamen: China Environmental Science Press, 2017: 776-781.(in Chinese)]
[25]李玮, 王明玉, 韩占涛, 等. 棕地地下水污染修复技术筛选方法研究——以某废弃化工厂污染场地为例[J]. 水文地质工程地质, 2016, 43(3): 131-140.
[LI W, WANG M Y, HAN Z T, et al. Screening process of brownfield site groundwater remedial technologies: a case study of an abandoned chemical factory contaminated site[J]. Hydrogeology & Engineering Geology, 2016, 43(3): 131-140.(in Chinese)]

备注/Memo

备注/Memo:
收稿日期: 2019 -09 -10; 修订日期: 2019 -11 -15
基金项目: 国家重点研发专项课题(YS2018YFC180060)
第一作者: 刘洋 (1995 -),男,硕士生,主要研究地下水污染修复。E -mail: 317020062@qq.com
通讯作者: 袁松虎(1979 -),男,博士,教授,主要从事环境水文地球化学过程与污染修复研究。E -mail: yuansonghu622@cug.edu.cn
更新日期/Last Update: 2020-05-15