[1]于德海,舒娇娇,秦凯凯.盾构地铁隧道穿越既有铁路桥的沉降分析[J].水文地质工程地质,2020,47(2):148-152.[doi:10.16030/j.cnki.issn.1000-3665.201905035]
 YU Dehai,SHU Jiaojiao,QIN Kaikai.An analysis of the settlement of a shield tunnel passing under the operating railway bridge[J].Hydrogeology & Engineering Geology,2020,47(2):148-152.[doi:10.16030/j.cnki.issn.1000-3665.201905035]
点击复制

盾构地铁隧道穿越既有铁路桥的沉降分析()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
47卷
期数:
2020年2期
页码:
148-152
栏目:
工程地质
出版日期:
2020-03-15

文章信息/Info

Title:
An analysis of the settlement of a shield tunnel passing under the operating railway bridge
文章编号:
1000-3665(2020)02-0148-05
作者:
于德海1舒娇娇1秦凯凯2
1.大连海事大学道路与桥梁工程研究所,辽宁 大连116026;2.云南省建设投资控股集团有限公司,云南 昆明650217
Author(s):
YU Dehai1 SHU Jiaojiao1 QIN Kaikai2
1.Institute of Road and Bridge Engineering, Dalian Maritime University, Dalian, Liaoning116026, China;2.Yunnan Construction and Investment Holding Group Co., Ltd., Kunming, Yunnan650217, China
关键词:
大型盾构地铁铁路桥地表沉降隧道三维有限元程序
Keywords:
large shield metro construction railway bridge surface settlement tunnel 3D finite element
分类号:
P642.26
DOI:
10.16030/j.cnki.issn.1000-3665.201905035
文献标志码:
A
摘要:
HTSS以大连地铁2号线香沙区间盾构隧道下穿铁路桥特殊地段为依托,通过三维有限元程序仿真模拟以及工程现场动态监测,研究盾构施工法对周围地层变形的影响和盾构下穿铁路桥造成的沉降特征。结果表明:盾构开挖引起的地表沉降经历了5个阶段,即初期扰动沉降、开挖面前部沉降、盾构机正上方沉降、盾构通过沉降、后期固结沉降;地表沉降整体为一个凹槽形,即隧道中心线地表沉降大,隧道两边沉降较小,按隧道横截面轴线左右对称,符合地表沉降机理,并与现场监测数据一致;距离开挖隧道越近,总体沉降位移越大,盾构开挖小于20 m时,其沉降位移沿着横向与纵向都有扩展,隧道开挖至40 m时,沉降位移主要沿着纵向扩展,横向扩展不明显;不同深度的上部土体沉降呈漏斗形,即隧道正上方沉降最大,两边沉降递减,沉降曲线基本对称,地表右侧受右线隧道开挖影响,沉降量略大于左侧;桥桩底端处于隧道拱顶上,且整个桩身处于破裂面之上,属于短桩范畴,桥桩变形主要以受土体作用而产生的竖向沉降变形为主。
Abstract:
Research on the shield tunnel of the Xiang-Sha bid section of Dalian metro is done to analyze the effect of the surface settlement by 3D finite element simulation, combined with in situ monitoring data. The results show that the surface settlement undergoes five stages: initial disturbance settlement, settlement in front of excavation, settlement above shield machine, settlement of shield passing and consolidation settlement. The overall shape of the surface settlement is a groove, the surface settlement of the central line of the tunnel is large, and the settlement of both sides of the tunnel is small. The settlement is symmetrical with the axis of the cross section of the tunnel, which conforms to the mechanism of the surface settlement and is consistent with the field monitoring data. The closer the tunnel is to be excavated, the larger the overall settlement displacement is. When the shield excavation is less than 20 m, the settlement displacement expands both horizontally and longitudinally. When the tunnel is excavated to 40 m, the settlement displacement mainly expands along the longitudinal direction, but the lateral expansion is not obvious. The funnel-shaped subsidence is the largest on top of the tunnel, and it decreases on two sides. The settlement curve is basically symmetrical, but the settlement on the right side is slightly larger than the left side because of the excavation of the right line tunnel. The whole pile is on the fracture surface of the tunnel, it belongs to the category of short piles and the deformation of the bridge pile is mainly caused by the vertical settlement of soil.

参考文献/References:

[1] (周宁,袁勇. 越江盾构隧道纵向结构分析模型的改进及应用[J]. 中国矿业大学学报,2010,39(2):208-213.
[ZHOU N,YUAN Y. An improved longitudinal structure model of cross-river shield tunnel and its application[J]. Journal of China University of Mining & Technology, 2010,39 (2): 208-213.(in Chinese) ]
[2]张云,殷宗泽,徐永福. 盾构法隧道引起的地表变形分析[J]. 岩石力学与工程学报,2002,21(3):388-392.
[ZHANG Y, YIN Z Z, XU Y F. Analysis of three-dimensional ground surface deformations due to shield tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(3): 388-392.(in Chinese) ]
[3]易宏伟,孙钧. 盾构施工对软黏土的扰动机制分析[J]. 同济大学学报,2000, 28(3): 277-281.
[YI H W, SUN J. Mechanism analysis of disturbance caused by shield tunneling on soft clays[J]. Journal of Tongji University, 2000,28(3):277-281.(in Chinese) ]
[4]吕培林, 周顺华. 软土地区盾构隧道下穿铁路干线引起的线路沉降规律分析[J]. 中国铁道科学,2007(2): 12-15.
[LV P L, ZHOU S H. Analysis of settlement laws caused by shield tunnel under-passing trunk railway in soft soil area[J]. China Railway Science, 2007(2): 12-15.(in Chinese) ]
[5]郑宜枫,丁志诚,戴仕敏. 超大直径盾构推进引起周围土体变形和土水压力变化分析[J].地下空间与工程学报,2006,2(8): 1349-1353.
[ZHENG Y F,DING Z C, DAI S M. An analysis of surrounding ground deformation and ground /water pressure fluctuations caused by a super-large diameter TBM[J]. Chinese Journal of Underground Space and Engineering, 2006, 2(8): 1349-1353.(in Chinese) ]
[6]邓小鹏,相建华.宝塔山特长隧道地应力场研究及岩爆预测[J].水文地质工程地质,2013,40 (1):83-88.
[DENG X P, XIANG J H. A study of the geostress field of the surrounding rocks of the Baota mountain tunnel and rock burst forecast [J]. Hydrogeology & Engineering Geology, 2013, 40 (1): 83-88.(in Chinese) ]
[7]王庆武,巨能攀,杜玲丽,等.深埋长大隧道岩爆预测与工程防治研究[J]. 水文地质工程地质,2016, 43 (6): 88-94.
[WANG Q W, JU N P, DU L L, et al. Research on rock burst prediction and engineering measures of long and deep-lying tunnels[J]. Hydrogeology & Engineering Geology, 2016,43(6): 88-94.(in Chinese) ]
[8]张鹏. 盾构隧道管片施工力学性能三维数值模拟研究[J]. 铁道工程学报,2012,10(7):63-69.
[ZHANG P. Research on mechanical property of segment of shield tunnel during construction with three-dimensional numerical simulation[J]. Journal of Railway Engineering Society, 2012, 10(7):63-69.(in Chinese) ]
[9]朱合华,丁文其,李晓军. 盾构隧道施工力学性态模拟及工程应用[J]. 土木工程学报,2000,33(3):98-103.
[ZHU H H, DING W Q, LI X J. Construction simulation for the mechanical behavior of shield tunnel and its application[J]. China Civil Engineering Journal, 2000,33(3):98-103.(in Chinese) ]
[10]张志强,何川,佘才高. 南京地铁盾构掘进施工的三维有限元仿真分析[J]. 铁道学报,2005,27(1): 84-89.
[ZHANG Z Q, HE C, SHE C G. Three-dimensional finite element modeling of excavation and advancement processes of shield tunnel construction in Nanjing metro[J]. Journal of the China Railway Society, 2005, 27(1): 84-89.(in Chinese) ]
[11]马伟斌,付兵先,杜晓燕,等. 地铁隧道下穿铁路桥施工变形分析及处理措施[J]. 地下空间与工程学报,2013, 9(4): 896-901.
[MA W B, FU B X, DU X Y, et al. Analysis on deformation of subway tunnel traversing under operating railway bridge and its treatment measures[J]. Journal of Underground Space and Engineering, 2013, 9(4): 896-901.(in Chinese) ]
[12]王占生, 张顶立. 浅埋暗挖隧道近距下穿既有地铁的关键技术[J]. 岩石力学与工程学报,2007, 26 (增刊2): 4208-4214.
[WANG Z S, ZHANG D L. Key techniques on shallow embedded tunnel constructed beneath existing subway tunnel[J]. Rock and Soil Mechanics, 2007, 26 (Sup2): 4208-4214.(in Chinese) ]

相似文献/References:

[1]徐岩,赵文,李慎刚,等.基于目标函数法的地铁隧道井群降水优化[J].水文地质工程地质,2009,36(5):98.
 XU Yan,ZHAO Wen,LI Shen-gang.Optimization of multi-well dewatering based on objective function for a subway tunnel[J].Hydrogeology & Engineering Geology,2009,36(2):98.

备注/Memo

备注/Memo:
收稿日期: 2019-05-14; 修订日期: 2019-09-24
基金项目:( 国家自然科学基金资助项目(41572248;40902075)ZK)
第一作者: ZK(于德海(1977-),男,博士,副教授,主要从事土木工程方面的研究与教学工作。E-mail: ydhhdy1977@163.com
更新日期/Last Update: 2020-03-15