[1]熊宗海,冯晓腊,张红章,等.武汉地区厚互层土中基坑抗突涌破坏评价方法研究[J].水文地质工程地质,2020,47(2):134-140.[doi:10.16030/j.cnki.issn.1000-3665.201909044]
 XIONG Zonghai,FENG Xiaola,ZHANG Hongzhang,et al.Study of evaluation method of anti-uprush stability of foundation pit with thick interbedded soil layers in Wuhan[J].Hydrogeology & Engineering Geology,2020,47(2):134-140.[doi:10.16030/j.cnki.issn.1000-3665.201909044]
点击复制

武汉地区厚互层土中基坑抗突涌破坏评价方法研究()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
47卷
期数:
2020年2期
页码:
134-140
栏目:
工程地质
出版日期:
2020-03-15

文章信息/Info

Title:
Study of evaluation method of anti-uprush stability of foundation pit with thick interbedded soil layers in Wuhan
文章编号:
1000-3665(2020)02-0134-07
作者:
熊宗海12冯晓腊12张红章12范卫琴12程华强3
1.武汉丰达地质工程有限公司,湖北 武汉430074;2.中国地质大学(武汉)工程学院,湖北 武汉430074;3.武汉市桥梁工程有限公司,湖北 武汉430074
Author(s):
XIONG Zonghai12 FENG Xiaola12 ZHANG Hongzhang12 FAN Weiqin12 CHENG Huaqiang3
1.Wuhan Fengda Geological Engineering Ltd.,Wuhan,Hubei430074,China;2.Department of Engineering,China University of Geosciences (Wuhan), Wuhan,Hubei430074,China;3.Wuhan Bridge Engineering Co.,Ltd.,Wuhan,Hubei430074,China
关键词:
厚互层土基坑突涌计算模型稳定安全系数
Keywords:
thick interbedded soil uprush of foundation pit calculation model safety factor
分类号:
TU46+3;TU411.6
DOI:
10.16030/j.cnki.issn.1000-3665.201909044
文献标志码:
A
摘要:
针对武汉地区厚互层土基坑,考虑坑底厚互层土重力、摩擦力和黏聚力的实际情况,建立了基于厚互层土的基坑突涌计算模型,提出了厚互层土基坑突涌稳定性安全系数计算方法。以武汉华润万象城深基坑工程为例,将本文模型的计算结果与《建筑基坑支护技术规程》(JGJ120—2012)和现有文献计算结果进行了比较。结果表明:将厚互层土含水层看作多个薄层含水层并用压力平衡法判断突涌不稳定时,突涌不稳定区域仅局限于厚互层土顶部1~2 m范围内,故可以将厚互层土看作隔水层而非含水层。因为武汉地区绝大部分厚互层土厚度远超过2 m,因此规程计算结果偏于保守。考虑厚互层土的黏聚力、自重、摩擦力建立的基坑抗突涌稳定性分析模型,在本工程案例中计算得突涌安全系数为3.5,而同等场地条件下规范采用的压力平衡法计算突涌安全系数为1.5,本方法计算结果约为规范方法的2.2倍,因此按照本文方法计算结果制定坑底抗突涌破坏方案,将比只依靠土体自重来抵抗突涌破坏更符合工程实际、更经济,为重新定义互层土在基坑抗突涌方面的作用进行了有益探索。
Abstract:
Aiming at the foundation pit with thick interbedded soil in Wuhan, considering the gravity, friction and cohesion of thick interbedded soil, a calculation model of anti-uprush of foundation pit with thick interbedded soil was established, and a calculation method of the anti-uprush stability of foundation pit with thick interbedded soil was proposed. Taking the foundation pit of Wuhan Huarun Wanxiang as an example, the calculation results of the model proposed in this paper are compared with the Technical Specification for Retaining and Protection of Building Foundation Excavations (JGJ120—2012) and existing literatures. The results show that when the thick interbedded soil was regarded as multiple thin aquifer layers and the pressure method is used to judge the uprush instability, the uprush instability area is only limited to the range of 1~2 m at the top of the thick interbedded soil, so the thick interbedded soil can be regarded as an impermeable layer instead of aquifer. Because most of the thick interbedded soil in Wuhan area is more than 2 m, the calculation results of the Technical Specification for Retaining and Protection of Building Foundation Excavations (JGJ120—2012) tend to be conservative. The safety factor of anti-uprush is calculated as 3.5 in the model of anti-uprush of foundation pit with thick interbedded soil which considering the gravity, friction and cohesion of thick interbedded soil, while the safety factor of anti-uprush calculated by the pressure balance method adopted by the code under the same site conditions is 1.5, the calculation result of anti-uprush stability model is about 2.2 times than the Technical Specification for Retaining and Protection of Building Foundation Excavations (JGJ120—2012). Therefore, the stability of anti-uprush at the bottom of the pit calculated by this method will be better than that calculated by this method. It is more practical and economical to rely on soil gravity to resist inrush damage, but this conclusion still needs to be tested by a lot of engineering practice. This study is a useful exploration for redefining the role of interbedded soil in the anti-uprush of foundation pit.

参考文献/References:

[1]荣雪宁, 徐日庆, 冯苏阳,等. 上浮极限状态下饱和土的浮力模型试验和理论分析[J]. 水文地质工程地质, 2019, 46(4): 90-96.
[RONG X N, XU R Q, FENG S Y, et al. Model tests and theoretical analyses of buoyancy in saturated soils during the ultimate limit state of up-lifting[J]. Hydrogeology & Engineering Geology, 2019, 46(4): 90-96.(in Chinese)]
[2]李瑛, 胡德军, 叶向前,等. 基于事故分析的深基坑承压水突涌机理研究[J]. 地下空间与工程学报, 2019, 15(3): 943-948.
[LI Y, HU D J, YE X Q, et al. Analysis and treatment of inrushing accidents in deep excavation[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(3): 943-948.(in Chinese)]
[3]李镜培, 张飞, 梁发云,等. 承压水基坑突涌机制离心模型试验与数值模拟[J]. 同济大学学报(自然科学版), 2012, 40(6): 837-842.
[LI J P, ZHANG F, LIANG F Y, et al. Centrifugal model tests and numerical simulation on hydraulic heave mechanism in excavation with confined water[J]. Journal of Tongji University (Natural Science), 2012, 40(6): 837-842.(in Chinese)]
[4]孙玉永, 周顺华, 肖红菊. 承压水基坑抗突涌稳定判定方法研究[J]. 岩石力学与工程学报, 2012, 31(2): 399-405.
[SUN Y Y, ZHOU S H, XIAO H J. Study of stability judgement method of confined water inrushing in foundation pit[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 399-405.(in Chinese)]
[5]XU B T, QIU J F, SUN Q, et al. Study of the damage mechanics and dewatering recovery programs for the shield tunnel under the Yangtze River[J]. Environmental & Engineering Geoscience, 2016, 22(4): 352-366.
[6]WANG J X, LIU X T, XIANG J D, et al. Laboratory model tests on water inrush in foundation pit bottom[J]. Environmental Earth Sciences, 2016, 75(14): 1072.
[7]张飞, 李镜培, 孙长安. 内撑式深基坑承压水抗突涌稳定数值模拟技术[J]. 地下空间与工程学报, 2017, 13(4): 1098-1105.
[ZHANG F, LI J P, SUN C A. Numerical simulation technology for hydraulic heave stability of deep braced excavation under confined water[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(4): 1098-1105.(in Chinese)]
[8]蔡光桃, 隋旺华. 采煤冒裂带上覆松散土层渗透变形的模型试验研究[J]. 水文地质工程地质, 2008, 35(6): 66-69.
[CAI G T, SUI W H. Model experimental study on the seepage of overburden soil layers above fractured rockmass due to coal-mining[J]. Hydrogeology & Engineering Geology, 2008, 35(6): 66-69.(in Chinese)]
[9]中国建筑科学研究院.建筑基坑支护技术规程: JGJ120—2012[S]. 北京: 中国建筑工业出版社, 2012.
[Ministry of housing and urban rural development of the people’s Republic of China. Technical specification for retaining and protection of building foundation excavations: JGJ120—2012[S]. Beijing:China Construction Industry Press, 2012.(in Chinese)]
[10]中华人民共和国建设部.岩土工程勘察规范: GB 50021—2001[S]. 北京: 中国建筑工业出版社, 2009.
[Ministry of Construction of the People’s Republic of China. Code for investigation of geotechnical engineering: GB 50021—2001 [S]. Beijing:China Construction Industry Press, 2009.(in Chinese)]
[11]唐传政, 唐冬云, 李宇红. 武汉轨道交通6号线某主体车站基坑工程变形问题分析[J]. 岩土工程学报, 2014, 36(增刊1): 198-201.
[TANG C Z, TANG D Y, LI Y H. Deformation analysis of foundation pit of a subject station of Metro Line 6 in Wuhan[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(Sup1): 198-201.(in Chinese)]
[12]丁春林, 朱恺, 叶丹. 承压水引发基坑突涌塑性破坏抑制因素分析[J]. 地下空间与工程学报, 2009,5(增刊2):1594-1599.
[DING C L, ZHU K, YE D. Analysis on inhibiting factors of inrushing plastic failure caused by confined water in foundation pit[J]. Chinese Journal of Underground Space and Engineering, 2009,5(Sup2):1594-1599.(in Chinese)]
[13]李军, 李亮亮. 承压水地层基坑坑底压拉突涌评价与物理试验[J]. 地下空间与工程学报, 2016, 12(3): 670-674.
[LI J, LI L L. Compression-tension failure evaluation and physical experiment for confined water foundation pit inrushing[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(3): 670-674.(in Chinese)]
[14]张飞, 李镜培, 杨博,等. 黏性隔水层基坑突涌机制的离心模型试验[J]. 岩石力学与工程学报, 2013, 32(3): 598-604.
[ZHANG F, LI J P, YANG B, et al. Centrifugal model tests on hydraulic heave mechanism of excavation in cohesive soil with confined water[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(3): 598-604.(in Chinese)]
[15]王军玺, 吴伟雄, 李琼,等. 承压水基坑突涌的水力劈裂[J]. 土木建筑与环境工程, 2015, 37(4): 105-111.
[WANG J X, WU W X, LI Q, et al. Burst in foundation pit on confined water using hydro-fracturing[J]. Journal of Civil, Architectural & Environmental Engineering, 2015, 37(4): 105-111.(in Chinese)]
[16]李瑛, 刘兴旺, 曹国强. 深基坑局部深坑突涌稳定性计算研究[J]. 岩土工程学报, 2014, 36(3): 580-584.
[LI Y, LIU X W, CAO G Q. Calculation of inrushing stability of local pits in deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 580-584.(in Chinese)]
[17]丁春林. 软土地区弱透水层承压水基坑突涌计算模型研究[J]. 工程力学, 2008, 25(10): 194-199.
[DING C L. A study on calculation model of inrushing for foundation pit of semipervious aquiclude with confined water in soft soil area[J]. Engineering Mechanics, 2008, 25(10): 194-199.(in Chinese)]
[18]钱家欢,殷宗泽. 土工原理与计算 [M]. 北京:中国水利水电出版社,1996.
[QIAN J H, YIN Z Z. Geotechnical Principle and Calculation[M].Beijing: China Water Conservancy and Hydropower Press,1996.(in Chinese)]
[19]杜贵成.改进的条形基坑突涌判别式[J].辽宁工程技术大学学报(自然科学版), 1998, 17(5): 507-510.
[DU G C. Further discussion of judgement in gushinh of a strip pit of foundations[J]. Journal of Liaoning Technical University (Natural Science Edition), 1998, 17(5): 507-510.(in Chinese)]
[20]谭松林. 考虑土体强度的建筑基坑突涌问题分析[J]. 地球科学, 2002, 27(2): 209-211.
[TAN S L. Analyses of abrupt gush problem of soil and water based on strength of soil body in building foundation pit[J]. Earth Science, 2002, 27(2): 209-211.(in Chinese)]

备注/Memo

备注/Memo:
收稿日期: 2019-09-16; 修订日期: 2019-11-14
基金项目: 武汉市市政建设集团有限公司科研项目(wszky201821);福建省中青年教育科研项目(2017)(JAT170538)
第一作者: 熊宗海(1986-),男,硕士,主要从事地质工程和岩土工程等方向的研究。E-mail:312025141@qq.com
通讯作者: 冯晓腊(1964-),男,博士,教授,主要从事地质工程和岩土工程等方向的研究。E-mail:602834086@qq.com
更新日期/Last Update: 2020-03-15